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ABSTRACT
A key challenge of routing in delay tolerant networks (DTNs)
is finding routes that have high delivery rates and low end-
to-end delays. When oracles are not available for future
connectivity, opportunistic routing is preferred in DTNs, in
which messages are forwarded to nodes with higher delivery
probabilities. We observe that real objects have repetitive
motions, but no prior research work has investigated the
cyclic delivery probability of messages between nodes. In
this paper, we propose to use the expected minimum delay

(EMD) as a new delivery probability metric in DTNs with
repetitive but non-deterministic mobility. Specifically, we
model the network as a probabilistic time-space graph with
historical contact information or prior knowledge about the
network. We then translate it into a probabilistic state-space
graph in which the time dimension is removed. Finally, we
apply the Markov decision process to derive the EMDs of
the messages at particular times. Our proposed EMD-based
routing protocol, called routing in cyclic MobiSpace (RCM),
outperforms several existing opportunistic routing protocols
when simulated using both real and synthetic traces.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Network Protocols

General Terms
Algorithms, Performance
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1. INTRODUCTION
Delay tolerant networks (DTNs) are occasionally-connected

networks that suffer from frequent network partitioning as
the result of high mobility, low density, short radio range,
intermittent power, interference, obstruction, attacks, etc.
Representative DTNs include sensor networks using sched-
uled connectivity, terrestrial wireless networks that cannot
ordinarily maintain end-to-end connectivity, satellite net-
works with periodic connectivity, and underwater acoustic
networks with moderate delays and frequent interruptions.

Routing in DTNs is an active research area. The De-
lay Tolerant Network Research Group (DTNRG) [1] has de-
signed a complete architecture to support various protocols
in DTNs. A DTN can be described abstractly using a time-
space graph, in which each edge contains a set of contacts.
A contact is a period of time during which two nodes can
communicate with each other. On the Internet, intermittent
connectivity causes loss of data. DTNs, in contrast, support
communication between intermittently-connected nodes us-
ing the store-carry-forward routing mechanism.

Routing in DTNs poses some unique challenges compared
to conventional data networks due to the uncertain and
time-varying network connectivity. In [2, 3], optimal routes
in a DTN can be discovered by constructing a time-space
graph with oracles. In practical situations where no oracle
is available to reveal future contacts, opportunistic routing
[4, 5] is proposed in which one or more copies of a message is
sent along different paths and each copy is always forwarded
to the node that has a higher delivery probability. Met-
rics for delivery probability can be either short-term metrics
(e.g., the time that has elapsed since the last encounter),
which have short life-spans and require frequent updates, or
long-term metrics which are relatively stable over time.

Previous works have proposed a variety of long-term met-
rics including encounter frequency [5] and social similarity
[6]. One advantage of the long-term delivery probability
metrics is that they are relatively stable once generated from
historical connectivity information or prior knowledge on the
contact pattern of the nodes, avoiding expensive and fre-
quent updates. We notice that most real objects have cyclic
motion patterns, and therefore it is possible and valuable in
practice to use some cyclic metric to increase the accuracy
of the estimated delivery probability. In this paper, we pro-
pose the use of a cyclic long term metric, called the expected

minimum delay (EMD), which is the expected time that an
optimal forwarding scheme takes to deliver a message at a
specific time from a source to a destination, in a network
with cyclic and uncertain connectivity.
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Figure 1: Nodes A and B have a contact with p = 0.7
during time slot 0 every 50 time slots.

A MobiSpace is a Euclidean space (or other higher di-
mensional space) where nodes can be either mobile or static
and they can communicate within each other’s transmission
range. We define a cyclic MobiSpace as a MobiSpace where
mobility is cyclic. In a cyclic MobiSpace, if two nodes are
often in contact at a particular time in previous cycles, then
the probability that they will be in contact at the same time
in the next cycle is high. A cyclic MobiSpace can be mod-
eled with a probabilistic time-space graph in which an edge
between two nodes contains a set of discretized probabilistic

contacts. Each discretized probabilistic contact is associ-
ated with a time slot and a contact probability. The con-
tact probability is the probability that the two nodes have
contacts during the time slot in every cycle. To calculate
the EMD of a message, we translate the probabilistic time-
space graph into a probabilistic state-space graph, where the
time dimension is removed from the edges. Then, we apply
the Markov decision process to calculate the EMD of the
state corresponding to the node hosting the message and the
current time. With EMDs, we propose a routing protocol,
called routing in cyclic MobiSpace (RCM).The contributions
of this paper are summarized as follows.

1. We propose the use of a cyclic, long-term delivery
probability metric, called EMD, to improve the perfor-
mance of opportunistic routing in cyclic MobiSpace.

2. We model a cyclic MobiSpace as a probabilistic time-
space graph and devise a lossless translation of this
graph model into a probabilistic state-space graph model.

3. We apply the Markov decision process (MDP) to solve
the EMDs of the states in our probabilistic state-space
graph model. We also extend a recent result on solving
MDPs and propose an efficient algorithm for calculat-
ing the EMDs in our state-space graph model.

4. We generate synthetic bus traces mimicking the real
traces, which will be available to the research commu-
nity for subsequent research efforts in DTNs.

5. We perform simulations to evaluate and compare RCM
with the enhanced versions of some existing proto-
cols, using the NUS student trace, the UMassDiesel-
Net trace, and our synthetic traces. Simulation results
show that RCM outperforms the other protocols.

This paper is organized as follows. Section 2 introduces
our graph models for the cyclic MobiSpace. Section 3 pro-
poses our methods to derive EMD in the state-space graph
model. Section 4 presents our simulation methods and re-
sults. Section 5 summarizes the related works. Section 6
concludes the paper with directions for future research.
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Figure 2: Discretized probabilistic contacts between
different sub-shifts in the UMassDieselNet trace.

2. PROBABILISTIC GRAPH MODELS
In a cyclic MobiSpace, nodes have cyclic motion and con-

tact patterns, and a common motion cycle T exists for all
nodes. For example, the common motion cycle T for a bus
system is a day. During each day, the positions of a bus
along a regular route at any time can be roughly estimated,
and so can be the contact probability distribution between
two buses. Contrary to a cyclic MobiSpace is a network
with completely random mobility, where the contact distri-
bution between any pair of nodes over any motion cycle is
a uniform distribution. Cyclic MobiSpaces are common in
the real world, since (1) the motion cycle of most objects
are based on human-defined or natural cycles of time such
as hour, day, week, etc; (2) most objects’ motions are repet-
itive, time-sensitive, and location-related. Note that cyclic
MobiSpace is defined without any assumption on the shapes
of the trajectories, nor are the trajectories required to be
functions of time as in [7].

In this section, we will first model a cyclic MobiSpace as
a probabilistic time-space graph, from which we will gener-
ate a probabilistic state-space graph, which is a probabilistic
graph without time-dependent edges. Our goal is to calcu-
late the EMD of each message from this probabilistic graph,
for which we provide an extended efficient algorithm.

2.1 Expected minimum delay (EMD)
The EMD is the expected time an optimal opportunistic

forwarding scheme takes to deliver a message given a starting
time and a source-destination pair. This optimal scheme
always maximizes the delivery probability of each message
by forwarding a single copy of the message in the network.
As shown in Figure 1(a), assume node A travels a circular
trajectory once every 50 time slots, and only in time slot
1 (Figure 1(a)), it has a contact with static node B with
probability 0.7. The contact probability between A and B in
any 50 time slots is shown in Figure 1(b). In the beginning of
each cycle, i.e., time slot 1, the probability that A can send a
message to B is 0.7, which makes the probability of A having
to store the message for 50 time slots before the next possible
forwarding opportunity 0.3. Suppose the transmission delay
from A to B is 0.1, then the EMD D0 of a message in time
slot 0 from A to B can be calculated as follows: D0 = 0.7×
0.1 + 0.3 × (50 + D0). Clearly, in any time slot t, the EMD
is Dt = D0 +(50− t mod 50) mod 50. We introduce EMD
as a new, accurate delivery probability metric because it
reflects the time-varying delivery probability between each
pair of nodes accurately during each cycle.
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Figure 3: A physical cyclic MobiSpace (a). The dis-
cretized probabilistic contacts between each pair of
nodes of a common motion cycle T (b).

2.2 Discretized probabilistic contact
We divide the common motion cycle T into small, fixed

time slots. For each pair of nodes, we introduce a set of
conceptual discretized probabilistic contacts, which is a tu-
ple (t, p), where t is a time slot in T and p is the contact
probability of the two nodes in the time slot t.

We show an example of the discretized probabilistic con-
tact generated from the UMassDieselNet trace [8, 9], where
we consider each sub-shift (see Section 4.3) as a node, one
day as the common motion cycle, and one minute as the unit
of a time slot. The discretized probabilistic contacts between
sub-shifts 01/AM (the morning sub-shift of shift number 1)
and 03/AM are shown in Figure 2(a). Figure 2(b) shows
those between another pair of sub-shifts.

From these figures, we can see that the discretized proba-
bilistic contacts between two nodes in a realistic cyclic Mo-
biSpace gather around only a few consecutive time slots,
and the number of discretized probabilistic contacts is much
smaller than the total number of time slots. Note that the
choice of time slot size is a trade-off between the accuracy1

of EMDs and the computation time.

2.3 Probabilistic time-space graph
We model a cyclic MobiSpace as a probabilistic time-space

graph G = (V, E, T ), where V is the set of nodes, E is the set
of edges between the nodes, and T is the common motion
cycle. An edge between two nodes is a non-empty set of
discretized probabilistic contacts between the two nodes.

Figure 3(a) shows a sample cyclic MobiSpace that we will
use throughout this paper. In this figure, nodes A and B
move in their circular and triangular trajectories respectively
with a cycle time of 30 units each, while node C travels along
its straight-line trajectory with a cycle time of 20 units. Sup-
pose nodes A, B, and C have contacts only during particular
time slots in a common motion cycle T = 60 units, and these
contacts are non-deterministic in nature due to uncertainty
of the nodes’ positions, communication failures, etc. The
set of discretized probabilistic contacts for each pair of the
nodes in this cyclic MobiSpace is shown in Figure 3(b).

The time-space graph G of the network is shown in Fig-

1Information about the ordering of the physical contacts
within the same time slot is lost.
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Figure 4: The time-space graph G and the state-
space graph G′ of the cyclic MobiSpace in Fig-
ure 3(a).

ure 4(a). In G, each edge contains the set of discretized prob-
abilistic contacts. For example, edge (A, B) contains two
discretized probabilistic contacts. One is labeled (0, 0.7),
which means its time slot is 0 and contact probability is 0.7.

2.4 Probabilistic state-space graph
In order to remove the time dimension from the edges in G,

we generate a probabilistic state-space graph G′ = (V ′, E′),
where V ′ is the set of states and E′ is the set of links which
are time-independent. G′ is generated as follows. For each
node u in G, we create a set of states {ti/u} for each time slot
ti when u has one or more discretized probabilistic contacts.
For example, three states 0/A, 10/A, and 30/A are created
in G′ (Figure 4(b)) for node A in G (Figure 4(a)), since A
has three discretized probabilistic contacts (0, 0.7), (10, 0.4),
and (30, 0.7) at different time slots. If node u has more than
one contact (with different nodes) in the same time slot,
then only one state is created for u corresponding to this
time slot in G′.

There are two types of links in G′: directional link and
bidirectional link. The directional link connects the consec-
utive states of a node into a ring. For example, the three
states of node A in G′ are connected to form a ring by three
directional links represented by dashed lines as shown in
Figure 4(b). The bidirectional link in G′ is created corre-
sponding to each discretized probabilistic contact in G. For
each discretized probabilistic contact between nodes u and
v in time slot t, a bidirectional link is created in G′ between
states t/u and t/v (shown as a solid line in Figure 4(b)).

Each state in G′ is a possible state of a message in the
network, and each link in G′ is a possible state transition of
a message. A message is in state 30/A if it is at node A in
time slot 30. If the message is kept in node A from time slot
30 to time slot 0 (which is a time span of 30 slots), then the
message transits from states 30/A to 0/A via a directional

link. On the other hand, if the message is forwarded in time
slot 30 from node A to node B, then it transits from states
30/A to 30/B via a bidirectional link.

Both types of links are labeled d/pmax, where d is the
transition delay and pmax is the maximal transition proba-
bility. For a directional link, pmax is always equal to 1, which
means a message can always be kept in a node without be-
ing forwarded. For a bidirectional link, pmax is equal to the
contact probability of the corresponding discretized proba-
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Figure 5: (a) A Markov decision process (MDP) model (b) Implicit action (c) The MDP of G′ in Figure 4(b)
with C as destination (d) The values and optimal actions after applying value iteration in Figure 5(c).

bilistic contact. This is because the forwarding probability
of a forwarding node cannot exceed its contact probability
with the receiving node. For simplicity, we let d = 0 for all
bidirectional links assuming that message forwarding is al-
ways restricted to a time slot. This assumption is based on
the fact that the delay of a message forwarding is generally
much smaller than the size of the time slot itself.

2.5 Remarks
In G, a message can be in any node at any time. However

in G′, a message can only be at a state in its correspond-
ing time slot. This results in an important difference in
G′: links are time-independent and they are always avail-
able when messages are in the corresponding states. For
example, whenever a message is in state 30/A, it always has
a chance of being transited to 30/B through the discretized
probabilistic contact available at time slot 30. In the rest of
this paper, we use the EMD of state to refer to the EMDs
of the message in this state.

Our probabilistic graph models differ from the models de-
fined in previous papers [2, 3] in that a contact in the pre-
vious models is a deterministic connection during a specific
period of time, while a discretized probabilistic contact is
conceptual and is drawn from the the cyclic contact history
or from the prior knowledge of the cyclic contact pattern
between a pair of nodes. The purpose of the discretization
is the creation of our graph model G′ with time-independent
links where EMDs can be calculated. Note that the transla-
tion from G to G′ is lossless since G can be reproduced from
G′ by combining the states of the every node.

The number of states in G′ depends on the number of
nodes and the discretized probabilistic contacts of each node
which is bounded by the number of time slots in T . Methods
to reduce the number of states includes increasing the size of
time slots and dropping the discretized probabilistic contacts
whose probabilities are below a certain threshold.

3. EXPECTED MINIMUM DELAYS
IN A STATE-SPACE GRAPH

This section reviews and reformulates a variation of the
Markov decision process (MDP). Using MDP, the values as-
sociated with the states in G′ are updated iteratively and
finally converge to their EMDs. An efficient approach is also
proposed to calculate EMDs by extending a recent work in
solving MDPs.

3.1 Markov Decision Process (MDP)
State-space searching is a very common problem in AI

planning (or decision-making), which is similar to routing.
The Markov decision process (MDP) [10, 11] provides a
mathematical framework for modeling decision-making in
situations where outcomes are partly random and partly un-
der the control of the decision maker. MDP is a generalized
Dijkstra’s algorithm for probabilistic graphs.

We reformulate a variation of MDP as a 5-tuple (S, A, T,
D, SG) as explained below. At any given time, the system
can be at only one state s in the set of all states S. Each
state s has a set of actions As ⊆ A (the set of all actions).
Only one action a is allowed to take effect at a time. The
effect of applying action a is that the system transits from
state s to another state. The transition probability function
Ta(s, s′), specifies the probability of transiting from state s
to state s′ when applying action a. Note that for any s and a,∑

s′∈S
Ta(s, s′) = 1. The delay function D(s, s′)2 specifies

the delay of transiting from state s to state s′. A value
function V (s), gives the expected minimum total delay for
transiting from s to any goal state g ∈ SG (the set of all goal
states). V (g) = 0. An MDP is illustrated in Figure 5(a),
where s1, s2, and g ∈ SG are different states. s1 has two
actions a1

1 and a2
1. If a1

1 takes effect, the system will transit
from s1 to state s2 with delay d1,2 and probability p1

1,2.
The MDP problem is to find the set of expected minimum

total delay values V (s) for each state s to reach any g ∈ SG

and the corresponding optimal action chosen at each state
in order to achieve the minimum values. Value iteration
[12] solves MDPs by iteratively updating the value functions
(Equation 1) of every state until they converge. In each
round of the iteration, based on the resulting values in the
last iteration, the value V (s) of each state s /∈ SG is updated
by choosing an action a ∈ As such that V (s) is minimized.
For an action a, the value of s is the sum of the delays
D(s, s′)+Vt(s

′) (for each possible next state s′) are weighed
by Ta(s, s′) (refer to Figure 5(a)).

Vt+1(s) = min
a∈A(s)

∑

s′∈S

{Ta(s, s′) × [D(s, s′) + Vt(s
′)]}. (1)

The value functions are considered to converge sufficiently
when the maximum difference between the values of all states

2In the traditional MDP models, cost function C is used.
We change it to delay function D in the networking context.
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in two consecutive iterations is less than some threshold
value. When the values of the states are properly initialized
(such as iteratively applying Equation 2, which is essentially
the Bellman-Ford algorithm), the value iteration is guaran-
teed to converge with the minimum values in the states [13].

V0(s) = min
a∈A(s)

{ min
s′:Ta(s,s′)>0

[D(s, s′) + V0(s
′)]} (2)

3.2 Deriving EMDs using MDP
Our probabilistic time-space graph model G′ differs from

the MDP model in that the states in G′ are not associated
with actions which tell the actual state transition proba-
bilities. However, implicit actions can be determined by
the node’s forwarding preferences. A forwarding preference
shows the current node’s decision on which node to forward
the message to (or to keep the message in the current node)
when connected with multiple nodes. Inspired by a research
work on robotics [14], we derive the optimal implicit action
without enumerating all implicit actions.

Remember that each link in G′ represents a possible state
transition and it has a delay d, and a maximal transition
probability pmax (see Section 2.4). In Figure 5(b), state s
may transit to three other states for which the corresponding
delays and the maximal probabilities are given. If the pref-
erential order of state transitions is {s1, s2, s3} (which means
s will transit to s1 whenever possible, and it will transit to
s3 only when the transition to neither s1 nor s2 is possi-
ble), the implicit action (which indicates the probabilities
p1, p2, and p3 of transiting from s to s1, s2, and s3 respec-
tively) is calculated as p1 = pmax

1 , p2 = (1−p1)×pmax
2 , and

p3 = (1−p1−p2)×pmax
3 . Note that the sum of all transition

probabilities of an action is always 1 since for each state s
there is at least one bidirectional link and thus at least one
pmax is 1. Also, some transition probabilities might be zero.
For example, p3 = 0 if pmax

2 = 1.
All implicit actions for a state can be obtained from the

permutation of the preferential order of state transitions
from this state. Fortunately, for an optimal forwarding pro-
tocol this order is always an increasing order of the expected
costs of the transitions. For instance, if s can only tran-
sit to states s1 and s2, and their costs D(s, s1) + V (s1) <
D(s, s2) + V (s2), then state s1 is preferred over state s2.
This is because the value of state s is the weight sum p1 ×
[D(s, s1)+V (s1)]+ p2 × [D(s, s2)+V (s2)], and to minimize
this weight sum given p1 + p2 = 1, p1 has to be maximized.

To calculate the EMD of a message in time slot t from
node A to node C in the G′ (Figure 4(b)), we modified G′

as follows. We replace all states of C with goal states Goal

Table 1: Comparison of value iteration (VI) and our
extended topological value iteration (E-TVI).

(a) Resulting value.

states 0/A 0/B 10/A 30/A 30/B 37/B

VI 59.87 66.41 49.88 63.14 51.70 44.70
E-TVI 59.92 66.46 49.91 63.19 51.73 44.73

(b) Computation time.

nodes 100 200 300 400 500

VI 0.515 1.256 3.515 7.194 10.25
E-TVI 0.137 0.360 0.668 1.225 2.426

whose EMDs are 0, and we remove all outgoing links from
Goal. If state t/A does not exist in G′, then we add state
t/A to G′ and add a link from t/A to the consecutive state
of A. For example, if t = 20, the resulting MDP from G′ is
shown in Figure 5(c). Applying value iteration on this MDP,
we get the values (shown inside the states) and the optimal
actions (labeled on the links) of each state in Figure 5(d).
Note that in Figure 5(d), some of the links are removed such
as the one from states 0/A to 0/B. This shows the situations
where a message is not forwarded from a node with a lower
EMD to a node with a higher EMD.

3.3 An efficient approach for EMDs
In MDPs, if a state s is a successor state of s′ (there is a

transition from s′ to s), then the value V (s′) is dependent
on V (s). This causal relation is transitive. In [13], topology
value iteration (TVI) is used to reduce the number of rounds
of updates performed to each state in the value iteration. In
TVI, Kosaraju’s [15] algorithm is used to find the set of
strongly-connected components {Ci} and their topological
order. If component C1 is a successor of C2 (i.e., for any
u ∈ C1 and v ∈ C2, u is a successor of v), then the values of
the states in C2 are dependent on those in C1 (but not vice
versa). That is, components C1 and C2 can be calculated
separately in a reverse topological order. TVI significantly
reduces the number of rounds in value iteration by breaking
the computation of the whole graph into the computation
of small components.

TVI cannot be directly applied to our graph model G′

since in G′ the non-goal states are likely to be connected
as a strongly-connected component. As in Figure 5(c), (1)
states of the same node are strongly-connected by direc-
tional links, and (2) states of different nodes are connected
by bidirectional links. However, if we group the states of the
same time slots into components (not necessarily strongly-
connected components), we find that these components form
a partial order if, given a time slot tb, each link starting at a
time slot before tb and ending at time slot in or after tb is re-
moved. For example, if we change the layout of Figure 5(c),
and remove the corresponding links by setting tb = 0, we
get the components C4, . . . , C1 in a partial order as shown
in Figure 6. In this figure, the set of removed links are shown
by dashed lines which we denote as Lb.

Our extended TVI algorithm has two steps. In step one,
the states are updated by TVI after modifying G′ with the
following steps: (a) we let tb = 0 and remove Lb from the
graph, (b) we add a state s∗ with its time slot being 3

2
T ,

(c) for each state s which has an outgoing link removed



(in set Lb), we add a link from s to s∗. Figure 6 shows
an example where the state added is 120/∗ and the links
added are shown by thick lines. The TVI is then applied to
update the component in their reversed topological order,
i.e., C1, . . . , C4. In step two of our extended TVI, we recover
the original graph by removing the added state s∗ and the
added links, and adding back the links in Lt. Then, we
continuously update the components in the same topological
order, i.e., C1, . . . , C4, until the values of states in all of these
components converge. Similar to TVI, our extended TVI is
efficient since it breaks the whole graph into a large number
of small components and update them separately.

Table 1(a) compares the resulting values of the states in
the MDP in Figure 6. We can see that the values computed
by both methods are almost identical. Table 1(b) compares
their computation time in networks with different number
of nodes generated as described in Section 4.2.

3.4 Routing and analysis
We propose our opportunistic routing protocol called rout-

ing in cyclic MobiSpace (RCM), which uses EMD as the
metric of delivery probability. Its forwarding rule is simple:
(1) for the single-copy forwarding case, a node u always for-
wards message to node v that it encounters iff the message
has a smaller EMD in v than in u at the current time; (2)
for the multiple-copy forwarding case, tickets are allocated
among nodes proportional to the reciprocal of their EMDs.

RCM uses our long-term metric EMD and it has a small
amortized overhead for metadata (routing information), since
it does not require frequent updates of metadata unlike al-
gorithms that use short-term metrics. For example, for a
DTN based on a bus system that operates for several years,
the contacts of the buses in the first few weeks can be gath-
ered and the generated probabilistic state-space graph can
be disseminated in the network once and for all. Addition or
removal of bus routes can be reflected in the graph through
incremental update.

The following theorems show the optimality of our algo-
rithm. Proofs are simplified due to space limitation.

Theorem 1. The value iteration and the extended TVI

guarantee that the values of the states converge to EMDs.

Proof. The algorithms converge to EMDs because (1)
the values are non-decreasing in each iteration, and (2) the
values are minimum upper bounded by EMDs initially and
in each iteration.

Suppose DAG is the EMD from nodes A to G at the cur-
rent time and DACG is the EMD from nodes A to C then
to G at the current time, then DAG ≤ DACG since an addi-
tional constraint, passing C, is placed on the possible mini-
mum delay paths between A and G.

Theorem 2. The single-copy opportunistic forwarding sch-

eme proposed is the optimal single-copy opportunistic for-

warding scheme in terms of expected delivery latency.

Proof. We need to prove that each forwarding in RCM
maximizes the EMD of the message. Let the EMD from
nodes A and B to destination G at the current time be
DAG and DBG (DAG > DBG) respectively. Then A should
forward the message to B in order to maximize the EMD of
the message if they meet. The assumption that there is a
node C through which the message has a larger EMD than
B is contradicted by DBG < DAG ≤ DACG.
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Figure 7: Performance comparison of existing pro-
tocols and their extended versions using the UMass-
DieselNet trace.

4. SIMULATION
We evaluate our protocol, RCM, in the context of other

routing algorithms using a wide variety of traces: NUS stu-
dent contact trace, UMassDieselNet trace, and our synthetic
bus traces. We will describe these network traces and our
simulation methods using these traces in respective sub-
sections. Simulation results show that RCM improves the
delivery rate and lowers the end-to-end delay in all traces
when compared to other existing protocols.

4.1 Protocols in comparison
We compare RCM against several other approaches. These

algorithms are based solely on deciding which messages to
forward during a contact with a given peer. Most of these al-
gorithms approximate delivery probability as the likelihood
of the existence of a delivery path. For our focus on the effi-
ciency of the delivery probability metrics and for fairness in
the comparison, we use the enhanced versions of these pro-
tocols that make use of the same level of prior knowledge of
historical connectivity patterns as RCM does.

Epidemic [16]. A node copies a message to every new
node it encounters that has not got a copy already, until its
copy of the message times out, or it is notified of delivery.

Spray&wait [17]. This protocol differs from Epidemic in
that it controls the number of copies of each message in the
network. A number L of logical tickets are associated with
each original message. A node i can only copy a message to
another node j it encounters if the message in i owns N > 1
tickets. The new copy in j will have L tickets (L = ⌊N/2⌋),
and N − L tickets will remain with the message in i.

Spray&focus [18]. This is an extension of Spray&wait
where a message with one ticket can still be forwarded from
node i to j if the delivery probability of j to the destination
is higher. A node with the later last encounter time with
a destination has a higher delivery probability. Transitivity
[5] is used to improve predictability in their mobility models.
We use a enhanced, Spray&focus∗, in which the average
meeting interval drawn from the contact history is used to
indicate delivery probability.

MaxProp [8]. A cost is assigned to each node for each
destination. Each node i keeps track of a probability f i

j of
the next meeting node being j and disseminate it to every
node in the network. The delivery probability from a source
to a destination is the total cost on their shortest path, where
cost of each hop (i, j) is 1 − f i

j . In our simulation, we use
a copy-controlled version using logical tickets, which differs
from Spray&focus only in the metric of delivery probability.
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Figure 8: Comparison of delivery rate using the
NUS trace.

In our enhanced version MaxProp∗, we let f i
j/f i

k = ti
j/ti

k

where ti
j , ti

k are the historical encounter times of i with j
and k respectively.

Note that all of the protocols that we implement aim to
compare different metrics for delivery probability, and all
other optimizations that have orthogonal effects on the per-
formance of the protocols are not implemented. The or-
thogonality means that these optimizations can be added to
all of our implemented algorithms and they are expected to
provide an equal level of improvement in their routing per-
formance. Such optimizations may include buffer manage-
ment [8], global estimation of message delivery probability
[19] and social centrality of the nodes [6], geometric informa-
tion [20], etc. Similarly, we assume that an ideal mechanism
serves to clear out buffers in the network of delivered data.

First, we conduct simulation studies to compare the per-
formance of Spray&focus, MaxProp, and their extended ver-
sions using the UMassDieselNet trace. The simulation en-
vironment and settings will be the same as specified in the
Section 4.3. As shown in Figure 7, Spray&focus∗ is much
better than Spray&focus in both delivery ratio and delay,
while MaxProp∗ slightly outperforms MaxProp. Note that
we use an ideal version of MaxProp where we assume each
node knows the cost function f of the other nodes, which
gives an upper performance bound. In practice, MaxProp
has a much bigger amortized overhead in communication
and computation than MaxProp∗ since the latter has a con-
stant cost function f .

4.2 NUS student contact trace
Accurate information of human contact patterns is avail-

able in scenarios such as university campuses. As shown
by the National University of Singapore (NUS) student con-
tact trace model [21], when the class schedules and student
enrollment for each class on a campus are known, accurate
information about contact patterns between students over
large time scales can be obtained without a long-term con-
tact data collection. Their contact model is simplified in
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Figure 9: Comparison of delay using the NUS trace.

several ways. (1) Two students are in contact with each
other iff they are in the same classroom at the same time.
(2) Sessions start on the hour and end on the hour, which
means that hour is the unit of time for the contact duration.
(3) Only the contacts that take place during class hours are
used. Non-class hours are removed to compress time. For
example, suppose the last class session on Monday ends at
9pm, and the first session on Tuesday starts at 8am. If Mon-
day 8pm to 9pm corresponds to the 10th hour, then Tuesday
8am to 9am is the 11th hour. The advantages of the trace
synthesized in this model are that they exhibit the same set
of characteristics to those observed in the real world and
it provides contact patterns of a large population (several
orders of magnitude larger than any reported real traces)
over a long period. The schedules of the 4,885 classes and
enrollment of 22,341 students for each of the class for each
week of 77 class hours are publicly available on [22].

We select a number of students N (100 ≤ N ≤ 500) in
each experiment due to the memory constraint in the sim-
ulation environment. Contacts related to the non-selected
students are ignored. We generate non-determinant traces
by taking absentees into consideration. Each student at-
tends a class with a attendance probability Pattend. Our
data processing include the following steps. (1) We break
each class session into several one hour class sessions and
reassigned unique IDs to them. 159 conflicting enrollments
are resolved by removing those enrollments with a lower class
session ID. (2) The selection of N students is tricky. If se-
lected randomly, the network becomes too sparse for mes-
sages to be delivered. On the other hand, when students
are selected by maximizing their similarities (the number
of common classes they are enrolled in), the network be-
comes over connected. To prevent the above extremes and
maintain the small-world property in the size-reduced stu-
dent networks, we use the following process. We select the
first student randomly. To select the kth student, we di-
vide the k − 1th selected students into two groups S1 and
S2, and select the kth student s as the one with the highest
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Figure 10: Statistics in the UMassDieselNet traces.

score
∑

s1∈S1
sim(s, s1)−

∑
s2∈S2

sim(s, s1) among the stu-
dents that are not yet selected, where the similarity func-
tion sim is defined as the number of common class ses-
sions enrolled by two students. We define a clustering factor
C = |S1|/(|S1|+|S2|) which determines the degree of connec-
tivity in the network. (3) If two students enroll in the same
class session, they have a discretized probabilistic contact in
the hour of the class session with probability P 2

absent. With
all of the discretized probabilistic contacts, the probabilis-
tic state-space graph can be built. (4) Finally, we generate
traces by generating contacts with probability P 2

attend for
each pair of students and each class session they enroll in.

The default setting in our simulation is Pattend = 0.8,
C = 0.5, 300 students, one ticket per message. In every
minute, every node sends messages to 20 randomly selected
nodes. As shown in Figures 8 and 9, for every protocols,
the delivery rate increases and the delay decreases as Pattend

increases. All protocols achieve their best performance when
C is approximately 0.6, and the performance of the protocols
improves as N decreases and L increases. The delivery rate
of RCM is approximately 25% on average (and up to 50%)
greater than that of the second best protocol MaxProp∗,
and the delay of RCM is 15% on average (and up to 60%)
smaller.

4.3 UMassDieselNet trace
Before presenting our simulation method and results, we

give a brief description of the UMassDieselNet [8, 9] testbed
and the traces collected on this testbed. We then describe
how we pre-process these traces.

In the UMassDieselNet bus system consisting of 40 buses,
the bus-to-bus contacts (the durations of which are rela-
tively short) are logged. Our experiments are performed on
traces collected over 55 days during the spring 2006 semester
with weekends, spring break, and holidays removed due to
reduced schedules. The bus system serves approximately
ten routes. There are multiple shifts serving each of these
routes. Shifts are further divided into morning (AM), mid-
day (MID), afternoon (PM), and evening (EVE) sub-shifts.
Drivers choose buses at random to run the AM sub-shifts.
At the end of the AM sub-shift, the bus is often handed over
to another driver to operate the next sub-shift on the same
route or on another route. Unfortunately, the all-bus-pairs
contacts provided in the original traces show no discernible
pattern. Significant effort is needed to obtain the contacts
at a sub-shift level which do exhibit periodic behavior.

We obtain the sub-shift level contact by the following
steps. Each sub-shift has a fixed starting time (TIME AT
GARAGE) and a fixed ending time (DRVR CHNG) every-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

D
el

iv
er

y 
ra

te

Hour

Spray&wait
Epidemic

Spray&focus*
MaxProp*

RCM

(a) Delivery rate (1 ticket).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

D
el

iv
er

y 
ra

te

Hour

Spray&wait
Epidemic

Spray&focus*
MaxProp*

RCM

(b) Delivery rate (3 tickets).

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0  5  10  15  20

D
el

ay
 (

ho
ur

s)

Hour

Epidemic
Spray&focus*

MaxProp*
RCM

(c) Delay (1 ticket).

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0  5  10  15  20

D
el

ay
 (

ho
ur

s)

Hour

Epidemic
Spray&focus*

MaxProp*
RCM

(d) Delay (3 tickets).

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20

H
op

-c
ou

nt

Hour

Epidemic
Spray&focus*

MaxProp*
RCM

(e) Forwarding (1 ticket).

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20

H
op

-c
ou

nt

Hour

Epidemic
Spray&focus*

MaxProp*
RCM

(f) Forwarding (3 tickets).

Figure 11: Comparison of different performance
metrics using the UMassDieselNet trace.

day. We obtain a mapping from sub-shifts to these times by
parsing one of the dispatch records DA all.txt. For exam-
ple, sub-shift 21/AM (the AM sub-shift of shift 21) starts
at 6:10AM and ends at 10:30AM. We also obtain a mapping
from day and bus to the sub-shifts served by the bus on that
day by parsing DB sheet.txt. For example, on 3/1/2006,
bus 3007 serves sub-shifts 21/AM, 21/MID, 21/PM, and
21/EVE. With the above two mappings, we translate 55
days of the bus-to-bus contacts into contacts between sub-
shifts. A virtual contact is created between two sub-shifts
if a bus is handed over from one sub-shift to another. Fig-
ures 10(a) and 10(b) show the distribution of all contacts
over a day and the distribution of the contact duration at
the sub-shift level.

The discretized probabilistic contacts between any pairs of
shifts is then generated from the 55 days of sub-shift based
contacts. Examples of the discretized probabilistic contacts
between two pairs are shown in Figures 2(a) and 2(b). We
set the time slot to be one minute. If in the trace of particu-
lar day, two sub-shifts have one or more contact during the
same time slot as a discretized probability contact, then the
contact probability of the discretized probability contact is
increased by 1

55
. With the discretized probabilistic contacts,

we can generate the probabilistic time-space graph and the
probabilistic state-space graph for RCM, the inter-meeting
time for Spray&focus∗, and the next meeting probability f
for MaxProp∗.



Figure 12: Our synthetic bus traces are generated
from metro maps: Miami (left) and Madrid (right).

Messages are generated from every node (sub-shift) to ev-
ery other nodes every 10 minutes. The TTL of each mes-
sage is 3 days. In different groups of simulations, messages
are created with 1 ticket and 3 tickets respectively. Fig-
ures 11(a) and 11(b) show that RCM outperforms all other
protocols except Epidemic in terms of delivery rate by ap-
proximately 5-15%. Similarly, Figures 11(c) and 11(d) show
that RCM outperforms all other protocols except Epidemic
in terms of delay by approximately 5-10%. The insignificant
improvement is because the contact between the nodes are
highly irregular in these traces. As we see in the simulation
performed on our synthetic bus traces, the improvement is
much more significant when bus stations are also considered
as nodes. From Figures 11(e) and 11(f), we can see that
RCM has a small overhead compared to Epidemic, but it is
on par with all the other protocols. Note that in Figures
11(c) to 11(f) the delay and hop-count of the messages are
averaged over the messages that are delivered by all proto-
cols except Spray&wait.

4.4 Synthetic bus trace
In this section, we will compare RCM and the other pro-

tocols with two more synthetic bus traces we generated. In-
spired by the NUS student contact trace, we generate two
sets of synthetic bus traces from maps of the metros found
in the Internet as shown in Figure 12. We develop a tool to
extract the routes from the maps and then on each route we
simulate a number of traveling buses.

Each bus travels a route starting from one of the stations
on the route. When several buses travel on the same route,
their starting stations are dispersed evenly along the route.
If the stations of a route are arranged as a line instead of
a circle, the motion cycle of the buses in this route is the
round trip time on this route. The time it takes for each bus
to travel between two consecutive stations is in a Poisson
distribution with mean being 5 minutes. The time that a
bus stays at a station is 1 minutes. Buses are in contact
with each other when they are in the same station. Unlike
the UMassDieselNet, both stations and buses are nodes in
our synthetic trace. We assign motion cycles to the buses
on each route according to the number of station on that
route. For the Miami map, the motion cycles for different
routes are 60, 120, and 240 minutes. For the Madrid map,
the motion cycles are 30, 120, 180, and 360 minutes. When a
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Figure 13: Comparison of different performance
metrics using our synthetic bus traces.

bus finishes a round trip on its route but it takes less time to
complete the route than the motion cycle of its route, the bus
must stop in its first station for the rest of the time. These
synthetic bus contact traces and more traces generated from
the other maps in the future will be available for the research
community.

As shown in Figures 13(a) and 13(b), in the Miami traces,
RCM and MaxProp∗ deliver all the messages, while
Spray&focus has a delivery rate of 85%. The delay of RCM
is 15% less than those of MaxProp∗ and Spray&focus.
On the Madrid traces which is much larger, RCM has a
significant (more than 40%) of improvement over all the
other protocols, and the delay is only about 40% of that of
Spray&focus. Though the delay is a little larger than that
of MaxProp∗, considered together with the delivery rate,
RCM shows a clear superiority over the other protocols.

4.5 Summary of simulation
To sum up, RCM outperforms the enhanced versions of

previous routing protocols with historical connectivity infor-
mation in terms of both delivery rate and delay. As shown
by the simulation results, RCM has more improvement over
the other protocols when the contact pattern between the
nodes are more regular as in the NUS student trace and
our synthetic bus trace where both bus and bus station are
nodes. RCM also shows an increasing relative improvement
in its performance when the size of the network and the
complexity in the contact pattern increase.

5. RELATED WORKS
In [2], Jain, Fall, and Patra presented a comprehensive

investigation on the DTN routing problem with different
levels of prior knowledge about the network. Specifically,
Dijkstra’s algorithm (with future connectivity information)
or the linear programming approach (when with informa-
tion of future connectivity, traffic demands, etc.) is used
to obtain an optimal path between a source and a destina-



tion. In [3], Merugu, Ammar, and Zegura proposed a DTN
routing algorithm that is similar in spirit to Dijkstra’s algo-
rithm in [2]. In [7], Liu and Wu propose a model for DTNs
with repetitive mobility. A hierarchical routing is further
proposed to make routing in such DTN models scalable.

Epidemic routing [16] is the first flooding-based routing
algorithm. Gossip [4], forwards with probability p. Oppor-
tunistic routings, such as [5], forward based on the delivery
probability. Different delivery probability metrics are pro-
posed including encounter frequency [5], time elapsed since
last encounter [8, 18, 19, 23, 24], social similarity [6], loca-
tion similarity [25], geometric distance [20], etc.

Trace data available for the research community [22] in-
clude UMassDieselNet trace, the NUS student contact trace,
etc. In [26], several opportunistic routing algorithms are
simulated in large realistic contact traces. A timely-contact
probability metric is proposed in this paper which captures
the contact frequency of the mobile nodes which is similar
to [5] and [8] in spirit.

6. CONCLUSION
In this paper we have presented our first research inves-

tigating a new cyclic delivery probability metric, expected
minimum delay (EMD), and provided methods to achieve
it in a cyclic MobiSpace. Our proposed probabilistic rout-
ing, routing in cyclic MobiSpace (RCM), is evaluated and
compared with the enhanced versions of some existing DTN
routing protocols using the NUS student trace, the UMass-
DieselNet trace, and our synthetic traces. The simulation
results demonstrate that RCM outperforms the compared
protocols in terms of delivery rate and delay.

Due to space limitation, we left some performance analysis
of our protocol to the future work, which includes the impact
of size of time slots on the performance of RCM. We will also
create more synthetic traces with different maps of metro
routes and generalize the conditions where RCM can provide
most significant improvement.
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