
STAR: Steiner-Tree Approximation in Relationship
Graphs

Gjergji Kasneci #1, Maya Ramanath #2, Mauro Sozio #3, Fabian M. Suchanek #4, Gerhard Weikum #5

#Max-Planck Institute for Informatics,
Database and Information Systems,

Saarbrücken, Germany
1kasneci@mpi-inf.mpg.de

2ramanath@mpi-inf.mpg.de
3msozio@mpi-inf.mpg.de

4suchanek@mpi-inf.mpg.de
5weikum@mpi-inf.mpg.de

Abstract— Large graphs and networks are abundant in modern
information systems: entity-relationship graphs over relational
data or Web-extracted entities, biological networks, social online
communities, knowledge bases, and many more. Often such
data comes with expressive node and edge labels that allow an
interpretation as a semantic graph, and edge weights that reflect
the strengths of semantic relations between entities. Finding close
relationships between a given set of two, three, or more entities
is an important building block for many search, ranking, and
analysis tasks. From an algorithmic point of view, this translates
into computing the best Steiner trees between the given nodes,
a classical NP-hard problem. In this paper, we present a new
approximation algorithm, coined STAR, for relationship queries
over large relationship graphs. We prove that for n query entities,
STAR yields an O(log(n))-approximation of the optimal Steiner
tree in pseudopolynomial run-time, and show that in practical
cases the results returned by STAR are qualitatively comparable
to or even better than the results returned by a classical 2-
approximation algorithm. We then describe an extension to our
algorithm to return the top-k Steiner trees. Finally, we evaluate
our algorithm over both main-memory as well as completely disk-
resident graphs containing millions of nodes. Our experiments
show that in terms of efficiency STAR outperforms the best state-
of-the-art database methods by a large margin, and also returns
qualitatively better results.

I. INTRODUCTION

A. Motivation and Problem

Many modern applications need to deal with graph-based
knowledge representations. Such applications include busi-
ness and customer networks managed in relational databases,
entity-relationship (ER) graphs over products, people, orga-
nizations, and events that are automatically extracted from
Web pages, metabolic and regulatory networks in biology,
social networks and social-tagging communities, knowledge
bases and ontologies in RDF or ER-flavored models, and
many more. The data of such graphs exhibits semantics-
bearing labels for nodes and edges and can thus be seen as
a semantic graph, with nodes corresponding to entities and
edge weights capturing the strengths of semantic relationships.
Often, these graphs are too large to fit into main memory, such
that the task of querying and analyzing them in an efficient
way becomes non-trivial. An example of such a graph is

the YAGO knowledge base [1], which has been constructed
by systematically harvesting semi-structured elements (e.g.,
infoboxes, categories, lists) from Wikipedia. The resulting
entities and relation instances have been integrated with the
WordNet thesaurus [2]. Figure 1 shows an excerpt; the entire
YAGO graph consists of millions of nodes (entities and entity
classes) and tens of millions of edges (facts that connect two
entities or classes). Another well-known graph with a simpler
structure is the IMDB movie database with movies, actors,
producers, and other entities as nodes and the movie cast
(information about directors, producers, composers, etc.) as
edges.

Fig. 1. Example of an entity relationship graph

Such graphs can be represented in relational or ER models,
XML with XLinks, or in the form of RDF triples. Correspond-
ingly, they can be queried using languages like SQL, XQuery,
or SPARQL. An important class of queries is relationship
search: Given a set of two, three, or more entities (nodes),
find their closest relationships (edges or paths) that connect
the entities in the strongest possible way. Here, a “strong” in-
terconnection should reflect the informativeness of the answer.
For example, when asking “How are Germany’s chancellor
Angela Merkel, the mathematician Richard Courant, Turing-
Award winner Jim Gray, and the Dalai Lama related?”,

a compact and informative answer would be that all four
have a doctoral degree from a German university (honorary
doctorates in the last two cases). On movie/actor graphs, the
game “six degrees of Kevin Bacon”1 entails similar search
patterns. On biological networks such as the KEGG pathway
repository2, the closest relationships between the two specific
enzymes and a particular gene would be of interest [3], [4],
[5]. Similar queries are needed to analyze business networks
between companies, their executive VPs, board members,
and customers, or to discover connections in intelligence and
criminalistic applications.

All the above scenarios aim at information discovery (as
opposed to mere lookup), so queries should return multiple
answers ranked by a meaningful criterion. Each answer can be
naturally defined as a tree that is embedded in the underlying
graph and connects all given input nodes. A reasonable scoring
model then is some aggregation of node and edge weights over
this tree. This query and ranking model has originally been
proposed for schema-agnostic keyword queries over relational
databases [6], [7], [8], [9]; a number of variations have
appeared in the literature (see Section 2). The formal problem
that underlies these models is to compute the k lowest-cost
Steiner trees: Given a graph G(V,E), with a set of nodes V
and a set of edges E, let w : E → R+ denote a non-negative
weight function. For a given node set V ′ ⊆ V , the task is
to find the top-k minimum-cost subtrees of G that contain all
query nodes of V ′, where the cost of a subtree T with nodes
V (T) and edges E(T) is defined as

∑
e∈E(T) w(e).

Given the NP-hardness of the problem and notwithstanding
the results on fixed-parameter tractability [10], as well as the
tractability results on the approximate enumeration of the top-
k approximate results [11], most prior works have resorted to
heuristics, and, in fact, have typically modified the ranking
model for the sake of efficiency (e.g., [12], [13], [14]). This
is unsatisfying as it mixes arguments about query and ranking
semantics with arguments about efficiency. Furthermore, many
of the leading database methods lack approximation or run-
time guarantees (e.g., [15], [7], [6], [12]). A theoretical study
conducted by the authors of [10] shows that the methods pre-
sented in [15], [7], [6], [16] turn out to have an approximation
ratio of O(n) where n is the number of query terms.

This paper overcomes these problems by staying with the
original, most natural semantics while computing near-optimal
Steiner trees with practically viable run-times. In fact, the
approximation algorithm developed in this paper even out-
performs those prior methods that have worked with relaxed
semantics.

B. Contributions and Outline

The main contributions of this paper are the following.

• We present STAR, a new efficient algorithm to the
Steiner tree problem, which exploits taxonomic schema

1http://en.wikipedia.org/wiki/Six Degrees of Kevin Bacon
2http://www.genome.ad.jp/kegg/pathway.html

information when available to quickly produce results for
n given query entities.

• We prove that STAR has a worst case approximation ratio
of O(log(n)). This improves the previously best-known
approximation guarantees of O(

√
n) or even O(n) for

practically leading database methods (see [10]). In our
experiments on real-life datasets, STAR achieves better
results (i.e. trees of lower weight) than the ones returned
by the 2(1 − 1

n)-approximation algorithm presented in
[17].

• We analyze the time complexity of the algorithm and
prove that it has a pseudo-polynomial run-time (i.e.,
polynomial under the realistic assumption that the ratio of
the maximum edge weight to the minimum edge weight
is polynomial in the size of the graph.)

• We generalize STAR to an algorithm that is capable of
computing approximate top-k relation trees for a given
set of query entities.

• We compare STAR with the best state-of-the-art database
methods in comprehensive main memory and on-disc
experiments. STAR outperforms all opponents, often by
an order of magnitude and sometimes even more.

The remainder of this paper is organized as follows. Section
II gives an overview on related work. In Section III, we
present our algorithm and in Sections IV and V we give
a detailed analysis of its approximation ratio and run-time
complexity. Furthermore, we generalize our algorithm to a
top-k approximation algorithm in Section VI. The evaluation
of our approach is presented in Section VII.

II. RELATED WORK

Relationship queries – queries which ask for relationships
between two or more entities – occur in many different
applications. For example, keyword proximity search over
relational databases [8], [18], [9], [6], [7], [10], [12], graph
search over ER, RDF and other knowledge bases [19], [20],
[21], [22], [23], entity relationship queries on the Web [24],
[25], etc. Such applications have to deal with large graphs
(sometimes with millions of nodes and edges) in general,
and require not only qualitatively good solutions, but also
implementations that are efficient. Our focus in this paper
is on a particular kind of relationship query which requires
the system to find top-k connections between two or more
entities. Formally, the problem of determining the closest
interconnections between two, three, or more nodes in a graph
is the Steiner tree problem.

The Steiner tree problem can be stated as follows. Given
a weighted graph G = (V,E) and a set of nodes V ′ ⊆ V ,
called terminals, find a tree in G of minimal weight such that
it contains all the terminals. It has been shown that the Steiner
tree problem is NP-hard. Consequently, there has been a lot
of research on finding approximate solutions to this problem.
The quality of an approximation algorithm is measured by the
approximation ratio. That is, the ratio between the weight of
the tree output by the algorithm and the optimal Steiner tree.
The Steiner tree problem can be generalized to the Group

Steiner tree problem (GST): Given a weighted graph G =
(V,E) and a set of groups V1, . . . , Vk where each Vi contains
nodes from V , find a tree in G of minimal weight such that
it contains at least one node from each group.

We give a brief overview of the related literature in the
following and compare it with our work.

Algorithms for Steiner Tree Computation: Existing ap-
proaches can be categorized according to their strategies: i)
distance network heuristic (DNH), ii) span and cleanup, iii)
dynamic programming, and iv) local search.
DNH: This heuristic [17], [26] builds a complete graph on
the terminals. The edge weights reflect the shortest distance
between two terminals in the underlying graph. By a minimum
spanning tree (MST) heuristic this complete graph can be used
to construct a 2(1− 1

n)-approximation to the optimal Steiner
tree. This heuristic is applicable to graphs of moderate size,
which can fit into main memory. It has been emulated by other
approaches for the top-k Group Steiner tree computation [6],
[7]. The latter two approaches, however, turn out to have an
approximation ratio of O(n), where n is the number of query
terms (see [10]).
Span and cleanup: This heuristic [16] aims at constructing the
MST on the terminals by starting from an arbitrary terminal
and spanning the tree stepwise until it covers all terminals.
Redundant nodes are deleted in a cleanup phase. [15] exploited
this heuristic by means of two different spanning strategies.
In contrast to the original heuristic, each terminal is a starting
point for a tree yielding a possible MST. While the first
spanning strategy chooses the edge with a minimum weight
to span a tree (minimum edge-based spanning), the second
strategy chooses the tree the spanning of which results in a
minimum cost tree (balanced MST spanning). Both methods
turn out to have an approximation ratio of O(n) (see [10]).
Dynamic programming and DPBF: The first dynamic pro-
gramming approach to the Steiner tree problem was introduced
by Dreyfus and Wagner [27]. It proceeds by computing
optimal results for all subsets of terminals. Then the optimal
result is computed for all the terminals. In [10], this heuristic
is modified to a faster method coined DPBF for the optimal
solution in the GST case. While the former work proved the
fixed parameter tractability of the Steiner tree problem, the
latter proved it for the GST variant. However, both methods
are applicable to graphs of moderate size.
Local search: This heuristic has been used in the realm of the
Euclidean Steiner tree problem and of the parallel Steiner tree
computation [28], [29]. In the first phase an interconnecting
tree is built based on the distance network heuristic introduced
by [17]. In the second phase the current tree is iteratively
improved by considering different nodes in the underlying
graph that may improve the cost of the current tree.

Algorithms for Top-k Steiner Tree Computation: Top-k
Steiner tree computation has been previously studied in the
context of keyword search on relational databases (see BANKS
[6], [7] and BLINKS [12]).

The first BANKS paper [6] (referred to as BANKS I),
addresses the GST problem on directed graphs. It emulates

the DNH heuristic by running single source shortest paths
iterators from each node in each of the Vis, where Vi is the
set of nodes which contain the keyword ki. The iterators are
expanded in a best-first strategy and follow the edges back-
wards. As soon as the iterators meet, a result is produced. This
technique is improved in BANKS II [7] by (1) reducing the
number of iterators, (2) allowing forward expansion on edges
in addition to backward expansion, (3) using a heuristic of
spreading activation which prioritizes nodes with low degrees,
and edges with low weights during the expansion of iterators.
However, the performance of both BANKS I and BANKS II
can significantly degrade in the presence of high-degree nodes
during the expansion process.

[13] makes use of the approaches of BANKS I and BANKS
II to generate a first minimal-height tree that contains the
query keywords. The authors show that with respect to the
tree heights the top-k answers can be efficiently generated with
provable guarantees.

DPBF [10] can be extended to a top-k algorithm by using
the intermediate subtrees generated during the dynamic pro-
gramming process to compute approximate top-k results.

Based on the notion of r-radius Steiner graphs, [14] exploits
graph partitioning and subgraph indexing along similar lines as
[12] for keyword proximity search over heterogeneous data.
The presence of the modified ranking model and subgraph
indexes make theoretical implications on the run-time or
approximation ratio of the approach impossible.

The recently proposed BLINKS [12] makes use of the
backward search strategy of BANKS, but based on cost-based
expansion. The authors prove that this expansion strategy,
which picks the cluster with the smallest cardinality to expand
next, has a bound on the worst case performance. Two kinds
of indexes are built to speed up the search. First, a keyword-
node index is built which stores, for each keyword w, a
list of nodes that can reach w along with the distance of
each node from w. Second, a node-keyword index is built
which stores, for each node, the set of keywords reachable
from it and its distance to each keyword. However, since the
proposed indexes can be too large to store and too expensive
to compute, the graph is partitioned into blocks. The blocks
are formed by partitioning the graph using node separators,
also called portals. A high level keyword-block index is built,
and more detailed indexes are built at the block level. Multiple
cursors are used to perform the backward search within blocks.
Whenever a portal of a block is reached, new cursors are
created to explore the remaining blocks connected to this
portal node. Instead of trees, BLINKS returns (r, {ni}) pairs,
where r is the root of the result tree and ni is a set of
nodes containing the query keywords. Hence, it is difficult
to reconstruct the result trees. Moreover, BLINKS needs to
have the graph in memory to partition it and to construct the
indexes, while in our approach the graph can be stored in a
database and only database indexes need to be used. Finally,
the performance of BLINKS is dependent on the number of
portals (i.e. nodes that belong to more than one block) and the
strategy for choosing them. This is because BLINKS needs

to use separate cursors not just for each keyword cluster,
but also for each block that it has to traverse. Hence for a
high number of portals, the performance of BLINKS suffers
because of the large number of blocks that have portals in
common. Although BLINKS lacks approximation and run-
time guarantees, experiments show that it performs up to an
order of magnitude faster than BANKS II.

III. THE STAR ALGORITHM

As described in the introduction, we are given an undirected
graph G(V,E) with a set of nodes V and a set of edges E,
and a non-negative weight function w : E → R+, intuitively
representing the connection strength between the two nodes
of an edge. For any subgraph G′ of G we denote the set
of nodes of G′ by V (G′), and the set of edges of G′ by
E(G′). Furthermore, we extend the weight function w on G′

by w(G′) =
∑

e∈E(G′) w(e).
Given a set V ′ ⊆ V , we are interested in finding a subgraph

T of G that contains all nodes from V ′, such that the weight of
T is minimal among all possible subgraphs of G that contain
all nodes from V ′. Note that inevitably, such a subgraph T
has to be a tree. Furthermore, we are interested in finding the
top-k such trees in the order of increasing weights.

Many real world graphs come with semantic annotations
such as node labels, representing entities, and edge labels,
representing relations. Furthermore, these graphs may have
taxonomic substructures indicated by the labels of the corre-
sponding edges. Our local search algorithm STAR can exploit
such taxonomic backbones, when available, to efficiently find
an approximate solution to the above problem. It runs in two
phases. In the first phase, it tries to quickly build a first tree
that interconnects all nodes from V ′. In the second phase it
aims to iteratively improve the current tree by scanning and
pruning its neighborhood. In the following, we present both
phases in detail.

A. First phase

In order to build a first interconnecting tree, STAR relies
on a similar strategy as BANKS I [6]. But, instead of running
single source shortest path iterators from each node of V ′

(as BANKS I does), STAR runs simple breadth-first-search
iterators from each terminal. The iterators are called in a
round-robin manner. As soon as the iterators meet, a result
is constructed.

Unlike BANKS I, in this phase, STAR may exploit tax-
onomic information (when available) to quickly build a first
tree, by allowing the iterators to follow only taxonomic edges,
i.e. edges labeled by taxonomic relations such as type or
subClassOf (see Figure 2). This way, STAR can quickly find a
taxonomic ancestor of all nodes from V ′. Consider the sample
graph of Figure 1. Suppose that V ′={Max Planck, Arnold
Schwarzenegger, Germany}. In the first phase, STAR would
construct the tree depicted in Figure 2.

In the following, we describe how we gradually improve
the tree returned by the first phase of our algorithm.

Fig. 2. Taxonomic interconnection

B. Second Phase

In the second phase, STAR aims at improving the current
tree iteratively by replacing certain paths in the tree by new
paths of lower weight from the underlying graph. In the
following we define which paths can be replaced.

1) Fixed Nodes and Loose Paths: Let T be a tree intercon-
necting all nodes of V ′. We denote the degree of a node v in
T by deg(v). A node v ∈ V ′ is called a terminal node, all
other nodes of T are called Steiner nodes.

Definition 1 (fixed node) A node in T is a fixed node if it
is either a terminal node or a Steiner node that has degree
deg(v) ≥ 3.

Intuitively, a fixed node is a node that should not be removed
from T during the improvement process.

Definition 2 (loose path) A path p in T is a loose path if it
has minimal length with respect to the following property: its
end nodes are fixed nodes.

From the definition above, it follows immediately that every
intermediate node in a loose path must be a Steiner node with
degree two.

Intuitively, a loose path is a path that can be replaced in T
during the improvement process.

It follows immediately that a minimal Steiner tree with
respect to V ′ is a tree in which all loose paths represent
shortest paths between fixed nodes.

2) Observations: In the following, for a tree T , we denote
the set of loose paths of a tree T by LP (T). Removing a
loose path lp from T splits T into two subtrees T1 and T2. In
Figure 3, the removal of the loose path that connects the nodes
a and b from T0 would return two subtrees interconnecting the
terminals u, w and x, y, z, respectively. Replacing a loose path
lp by a new, shorter path, means computing the shortest path
between any node of T1 to any node of T2. Note that since
the end nodes of the loose path lp are fixed nodes, they are
not removed when lp is removed. This means that removing a
loose path that ends into a fixed node v of degree three turns
v into an unfixed node, and the two remaining loose paths
that had v as an end node are merged into one single loose
path. In Figure 3, the removal of the loose path that connects
a and b turns a and b into unfixed nodes. The loose paths that
were connected to b (or to a, respectively) are merged into a

wl
高亮

wl
高亮

wl
高亮

single loose path. On the other hand, inserting a loose path
that ends into an unfixed node v turns v into a fixed node, and
the loose path that passes through v is split into two loose
paths. In Figure 3, connecting a and d by a new path turns a
and d into fixed nodes. The loose path that went through d (or
through a, respectively) is split into two loose paths. Hence,
the number |LP (T ′)| of loose paths in an improved tree T ′ is
|LP (T)| − 2 ≤ |LP (T ′)| ≤ |LP (T)|+ 2.

Lemma 1 A tree T with terminal set V ′, |V ′| ≥ 2, has at
least |V ′| − 1 and at most 2|V ′| − 3 loose paths.

Proof The proof is by induction on the number of
terminals. Obviously, for a tree T with two terminals
|V ′| − 1 ≤ |LP (T)| ≤ 2|V ′| − 3 holds. Let T be a tree with
|V ′| > 2. Let lp be a loose path in T . Removing lp from T
splits T into two subtrees T1 with a terminal set V ′

1 and T2

with a terminal set V ′
2 . By induction, our claim holds for T1

and T2. With the above discussion, connecting T1 and T2 again
through lp may lead in each of the trees T1 and T2 to one more
loose path. Hence, the overall number of loose paths in T is
upperbounded by |LP (T)| ≤ |LP (T1)| + |LP (T2)| + 2 + 1.
On the other hand, the connection through lp may leave the
number of loose paths in T1 and T2 unchanged, resulting
in |LP (T)| ≥ |LP (T1)| + LP |(T2)| + 1. Assuming that
|LP (T1)| = 2|V ′

1 | − 3 and |LP (T2)| = 2|V ′
2 | − 3 leads to

|LP (T)| ≤ (2|V ′
1 | − 3) + (2|V ′

2 | − 3) + 2 + 1 = 2|V ′| − 3.
Assuming that |LP (T1)| = |V ′

1 | − 1 and |LP (T2)| = |V ′
2 | − 1

leads to |LP (T)| ≥ (|V ′
1 | − 1) + (|V ′

2 | − 1) + 1 = |V ′| − 1 �

3) Finding an approximate Steiner tree: In the second
phase, STAR keeps on iteratively improving the current tree
T . In each iteration our algorithm removes a loose path lp
from the current tree T . Consequently, in each iteration T is
decomposed into two components T1 and T2. The new tree
T is obtained by connecting T1 and T2 through a path that is
shorter than lp (see Figures 3, 4, and 5). Hence, the inherently
difficult Steiner tree problem is reduced to the problem of
finding shortest paths between subsets of nodes. Heuristically,
in each iteration we remove the loose path with the maximum
weight in T . A high-level overview is given in Algorithm 1.

Algorithm 1 improveTree(T , V ′)
1: priorityQueue Q = LP (T) //ordered by decreasing weight
2: while Q.notEmpty() do
3: lp = Q.dequeue()
4: T ′ ← Replace(lp, T)
5: if w(T ′) < w(T) then
6: T = T ′

7: Q = LP (T) //ordered by decreasing weight
8: end if
9: end while

10: return T

Speaking abstractly, the above algorithm greedily scans and
prunes the neighborhood of T for better trees. Paths that

Fig. 3. After first iteration

Fig. 4. After third iteration

Fig. 5. After fourth iteration

exceed the weight of the loose path upon which the current
tree is being improved are pruned. Note that this method leads
only to a local optimum. However, we show in Theorem 1 that
this local optimum is relatively close to the global optimum.

As an example, we show how STAR would improve the
taxonomic tree returned by the first phase of the algorithm (see
Figure 2). In the first iteration the algorithm would remove the
loose path that connects the fixed node labeled with Germany
to the fixed node labeled with person. The improved tree is
depicted in Figure 6. Note that since STAR aims to find closest
relations between entities, it views the edges in Figures 6 and
7 as undirected.

Fig. 6. Result of the first iteration.

In the second iteration the path connecting the fixed node
labeled with Arnold Schwarzenegger to the fixed node la-
beled with physicist is removed. The improved tree (depicted
in Figure 7) is at the same time the final tree, since no loose
path can be improved. Another example is depicted in Figures
3-5.

Fig. 7. Result of the second iteration.

The method Replace(lp, T) (line 4 of Algorithm 1) removes
the loose path lp from T . This removal splits T into two
subtrees T1 and T2. Then the shortest path in G that connects
any node of T1 to any node of T2 is determined and combined
with T1 and T2 into a new tree T ′ of lower weight. For
this purpose, Replace(lp, T) calls another method, called find-
ShortestPath(V (T1), V (T2), lp), which runs one single source
shortest path iterator from each of the node sets V (T1) and
V (T2). This method is presented in Algorithm 2. In the
beginning, each of the iterators Q1, Q2 contains all the nodes
from V (T1) and V (T2), respectively (lines 5, 6). The variables
current and other (lines 7 and 8) represent the subscript
indices of Q1 and Q2. As presented in lines 10 to 12, Qcurrent

points to the iterator that has minimal number of fringe nodes.
Intuitively, Qcurrent represents the iterator that is currently
expanded. This expansion heuristic is similar to the cost-
balanced expansion used by BLINKS [12], which attempts

to balance the number of accessed nodes (i.e., the search cost)
for each iterator. It is also similar to the expansion heuristic
used by BANKS II [7], which prioritizes nodes with low
degrees during the expansion. However, the difference is that
we consider the whole node collection in an iterator as a single
node. Each iterator aims at reaching a node from the starting
set (source) of the other iterator, represented by V (Tother)
in line 27. Hence, in case that Qcurrent points to the iterator
that started from V (T1), the set V (Tother) points to V (T2) and
vice versa. During the expansion, for each node v′ visited by
the current iterator, we maintain its current predecessor, that
is, the node v from which the iterator reached v′ (line 23).
Again the predecessor is dependent on the current iterator.
The current predecessor of v′ is chosen such that the distance
dcurrent of v′ to the source of the current iterator is minimized
(lines 21-23). We maintain this distance for each visited node
v′ (line 22). Maintaining the predecessor of a visited node v′,
helps us rebuild the path from v′ to the source. However, as
soon as the iterator Qcurrent encounters a node v that has
a distance greater than or equal to the weight of the loose
path lp upon which we are aiming to improve the current
tree, the expansion stops (lines 14, 15). The reason for this is
that all other nodes in Qcurrent have a greater distance to the
source than v, since the nodes in the iterators are ordered by
increasing distance from the sources.

Algorithm 2 findShortestPath(V (T1), V (T2), lp)
1: for all v ∈ V do
2: if v ∈ V (T1) then d1(v) = 0 else d1(v) =∞
3: if v ∈ V (T2) then d2(v) = 0 else d2(v) =∞
4: end for
5: PriorityQueue Q1 = V (T1) //ordered by inc. distance d1

6: PriorityQueue Q2 = V (T2) //ordered by inc. distance d2

7: current=1
8: other=2
9: repeat

10: if fringe(Qother)<fringe(Qcurrent) then
11: swap(current, other)
12: end if
13: v = Qcurrent.dequeue()
14: if dcurrent(v) ≥ w(lp) then
15: break
16: end if
17: for all (v, v′) ∈ E do
18: if v′ has been dequeued from Qcurrent then
19: continue
20: end if
21: if dcurrent(v′) > dcurrent(v) + w(v, v′) then
22: dcurrent(v′) = dcurrent(v) + w(v, v′)
23: v′.predecessorcurrent = v
24: end if
25: Qcurrent.enqueue(v′)
26: end for
27: until Q1 = ∅ ∨Q2 = ∅ ∨ v ∈ V (Tother)
28: return path connecting T1 and T2

Now we move on to proving the approximation guarantee
of the STAR algorithm.

IV. APPROXIMATION GUARANTEE

The following proof has a very important implication. It
entails that the approximation ratio for the cost of the final
tree returned by STAR is independent of the tree constructed
in the first phase.

The proof proceeds as follows. We define a mapping be-
tween each loose path in the tree returned by the algorithm,
and a more expensive path in the optimum solution. Such a
mapping has the property that at most 2dlog Ne + 2 loose
paths are mapped onto a same path. Moreover, each edge in
the optimum solution occurs in the range of the mapping at
most twice. Hence, summing over all paths in the range of the
mapping gives an upper bound (of 4dlog Ne+ 4) on the cost
of the tree yielded by the algorithm.

The process of finding such a mapping consists of two
phases. First, we identify a collection of paths in the optimum
tree that do not overlap too much. Then, we go back to the
tree yielded by the algorithm, trying not to assign too many
loose paths to the same path in the optimal tree. Lemma 2
deals with this non-trivial task.

Before diving into the proof, we need some auxiliary
notations. We shall denote an ordered pair by (i, j) (this means
that (i, j) 6= (j, i)), while an unordered pair will be denoted by
{i, j}. For any graph G, dG(u, v) denotes the shortest distance
between u and v in G. In a tree, we denote by uv the (unique)
path between u and v.

Our input is an undirected graph G = (V,E) and a set of
terminals V ′ ⊆ V that are to be connected. Let N = |V ′|
(in what follows we assume N > 2). Let TO be an optimal
Steiner tree with respect to the set V ′ of terminals in the input.
Let TA be the Steiner tree yielded by the STAR algorithm.

Lemma 2 Let L(TA) be the set of loose paths in TA. For any
circular ordering v1, . . . , vN of the terminals in TA, there is
a mapping µ : L(TA)→ V ′ × V ′ such that:

1) µ is defined for all loose paths in TA;
2) for each loose path P with end points u and v, let T1

and T2 be the two trees obtained by removing from TA

all nodes in P (and their edges), except u and v; then,
µ(P) = {vi, vi+1} for some i = 1, . . . , N and one of
the nodes vi, vi+1 belongs to T1, while the other one
belongs to T2;

3) for each pair of terminals {vi, vi+1} there are at most
2dlog Ne+ 2 loose paths mapped to {vi, vi+1}.

Proof For ease of presentation, we assume TA is rooted at
any arbitrary terminal node and its edges are directed from
the root towards the leaves. Then, we denote by u→ v a path
where u is closer to the root than v. Furthermore, for any
subtree T of TA we shall denote by τ(T) the set of terminals
belonging to T . The first step in defining the mapping is to
find a labeling with good properties, as follows.

For each loose path P = u → v let Tu and Tv be the
subtrees of TA rooted at u and v, respectively. Let vi and vj

be the two terminals having the minimum absolute difference
|i − j| among all pairs vi, vj , satisfying the constraints vi ∈
τ(Tv) and vj ∈ τ(Tu) \ τ(Tv). Label P with the ordered pair
(i, j). Iterate this procedure for all loose paths.

We now study some properties of this labeling. Let vi be
any terminal and let Pi be the path connecting the root to vi.
Consider the set of labels occurring in Pi of the kind (i, j),
where j > i; let (i, i + j1), . . . , (i, i + jk) be the sequence
of such pairs, ordered by non-decreasing jh’s. We prove that
jh+1 ≥ 2jh, h = 1, . . . , k − 1, which together with the fact
that jh’s are not larger than N implies k ≤ dlog Ne+ 1.

Suppose by contradiction that there is h such that jh+1 <
2jh. Consider the two loose paths labeled with (i, i + jh) and
(i, i + jh+1). Let P = u → v be the one of the two that is
closest to the root.

By the definition of the labeling, {vi, vi+jh
, vi+jh+1} ⊆

τ(Tu). There are two cases, either P is labeled with (i, i+jh)
or P is labeled with (i, i+ jh+1). In the former case, vi+jh

/∈
τ(Tv) and jh+1−jh < jh. Hence, P would have been labeled
with (i+ jh+1, i+ jh). In the latter case, vi+jh+1 /∈ τ(Tv) and
jh+1−jh < jh, which implies that P would have been labeled
with (i + jh, i + jh+1). Therefore, in both cases we obtain a
contradiction.

In other words, we just proved that in the path between the
root and any terminal vi, the number of labels of the kind
(i, j), where j > i, is at most dlog Ne + 1. From the way
the labeling has been defined, as well as from the fact that
there is exactly one path between the root and any terminal,
it follows that in the whole tree TA such labels can occur at
most dlog Ne+1 times. Symmetrically, we can show that the
number of labels of the kind (i, j) where j < i, is bounded
by the same quantity.

In order to obtain the desired mapping the labeling is refined
in the following way. Replace each label (i, j) with (i, i + 1)
if j > i and with (i, i− 1) otherwise. Now, drop the ordering
of the pairs, that is, turn each label (i, i + 1) into {i, i + 1}.
This implies that each label can occur at most 2dlog Ne + 2
times. Finally, for each loose path P , define µ(P) = {vi, vj}
where {i, j} is the label of P . It is straightforward to see that
the claimed three properties are satisfied. �

Theorem 1 The STAR algorithm is a (4dlog Ne+ 4)-
approximation algorithm for the Steiner Tree problem.

Proof Consider a walk on TO that uses each edge exactly
twice and that visits all nodes in TO. Such a walk gives a cir-
cular ordering v1, . . . , vN of the terminals, ordered according
to their first occurrence in such a walk. We have that

N∑
k=1

dTO
(vk, vk+1) = 2w(TO). (1)

Using Lemma 2, we define a mapping µ with respect to the
circular ordering v1, . . . , vN . From property 2 of the mapping
µ and from the termination condition of the STAR algorithm,
it follows that for any loose path P = uv in TA

dTA
(u, v) ≤ dTO

(µ(uv)), (2)

where dTO
(µ(uv)) is the distance, in the optimum solution,

between the two entries of µ(uv). Finally, we can write

w(TA) =
∑

uv∈LP (TA)

dTA
(u, v) (3)

≤
∑

uv∈LP (TA)

dTO
µ(uv) (4)

≤
N∑

k=1

(2dlog N + 2e) dTO
(vk, vk+1) (5)

≤ (4dlog Ne+ 4) w(TO). (6)

where inequality (4) follows from Equation 2, inequality (5)
follows from property 3 of the mapping µ, and inequality (6)
follows from Equation 1. �

V. TIME COMPLEXITY

The algorithm as it has been presented might have exponen-
tial running time. In fact, the cost of the tree might decrease
at each step by an infinitesimally small amount. Fortunately,
this can be solved by using a relatively simple “trick”, which
guarantees that at each step a significant improvement on the
cost of the current tree is made.

Given ε > 0, we introduce the improvement-guarantee rule,
which is defined as follows. Let P be a loose path, and let P ′

be the path selected by the algorithm to replace P ; replace P
if and only if w(P ′) ≤ w(P)

1+ε . The algorithm is then iterated
until no loose path can be improved.

Let wmax and wmin be the maximum and minimum cost
of the edges in the input graph. The following theorem shows
that the STAR algorithm with the improvement-guarantee rule
is a pseudopolynomial algorithm, namely its running time is
polynomial if the ratio wmax

wmin
is polynomial in the size of the

input. Let n, m,N denote the number of vertices, edges, and
terminals of the input graph, respectively.

Lemma 3 Given ε > 0, the STAR algorithm with the
improvement-guarantee rule is guaranteed to terminate in
O

(
1
ε

wmax
wmin

m
)

steps.

Proof Let T̄ be the initial tree. We have that w(T̄) ≤ mwmax.
At any step of our algorithm, let P be a loose path and let
P ′ be the path selected by the algorithm to replace P . By the
improvement-guarantee rule, it follows that

w(P)− w(P ′) ≥ (1 + ε)w(P ′)− w(P ′) ≥ εwmin. (7)

Hence, the cost of the tree decreases at each step by at least
εwmin. This gives a bound on the number of steps k, as follows

mwmax − kεwmin ≥ 0⇔ k ≤ 1
ε

wmax

wmin
m. (8)

�

The next theorem shows a trade-off between the approxi-
mation guarantee of the STAR algorithm and its running time.

Theorem 2 Given ε > 0, the STAR algorithm with the
improvement-guarantee rule is a (1 + ε)(4dlog Ne + 4)-
approximation algorithm for the Steiner Tree problem. Its
running time is O(1

ε
wmax
wmin

mN(n log n + m)).

Proof The time-complexity bound follows from Lemma 3
and from the fact that at each step the STAR algorithm might
invoke Dijkstra’s algorithm at most (2N − 3) times (one for
each loose path, see Lemma 1). To prove the approximation
ratio, it suffices to replace Equation 2 in Theorem 1 with

dTA
(u, v) ≤ (1 + ε)dTO

(µ(uv)), (9)

and change the remaining equations accordingly. We include
all steps for completeness. We have that

w(TA) =
∑

uv∈L(TA)

dTA
(u, v) (10)

≤
∑

uv∈L(TA)

(1 + ε)dTO
µ(uv) (11)

≤
N∑

k=1

(1 + ε) (2dlog Ne+ 2) dTO
(vk, vk+1) (12)

≤ (1 + ε) (4dlog Ne+ 4) w(TO). (13)

�

VI. APPROXIMATE TOP-K INTERCONNECTIONS

As demonstrated in Algorithm 2, the weight of the loose
path lp upon which the current tree T is being improved serves
as an upper bound for the weights of new interconnecting paths
between the subtrees of T that result from the removal of lp
from T . The final result of the STAR algorithm, as given by
Algorithm 1, is a tree T in which there is no loose path upon
which T can be improved.

In order to generalize STAR to an algorithm that can
compute approximate top-k interconnections, we start from the
final tree T returned by the original STAR algorithm, which
is stored in a priority queue (see lines 1-3 of Algorithm 3).
While the size of this priority queue is smaller than k, we
keep on generating new trees from an artificial relaxation of
the loose path weights of the current tree.

Algorithm 3 getTopK(T , k)
1: Q : priority queue of trees
2: T = improveTree(T ,V ′)
3: Q.enqueue(T)
4: while Q.size < k do
5: T ′ = relax(T, ε)
6: T ′ = improveTree′(T ′, V ′)
7: T = reweight(T ′)
8: Q.enqueue(T)
9: end while

As shown in Algorithm 4, we artificially relax the weights
of each loose path lp in the current T by adding a tunable value

ε > 0. We denote the tree with the relaxed loose path weights
by T ′. We use these artificial loose path weights as upper
bounds for the weights of new interconnecting paths between
subtrees of the current tree T ′ that result from the removal
of the corresponding loose path from T ′. Then, in line 6 of
Algorithm 3, we call a modification of the method improveTree
(see Algorithm 1) on the input (T ′, V ′). This modification
takes care that during the improvement of T ′ upon one of its
loose paths lp the new interconnecting path is not the same
as lp. Note that this would always happen since the weight of
lp was artificially increased, and in the underlying graph G
the path lp would still be the shortest path connecting the two
corresponding subtrees of T ′. For this purpose, we consider
only interconnecting paths that are node-disjoint to lp.

The method reweight (line 7) reweights the result of
improveTree′. That is, the weight of loose paths of T ′ which
were also loose paths in the previous tree T is set back to its
original value.

Algorithm 4 relax(T , ε)
1: T ′ = T.copy
2: for all lp ∈ LP (T ′) do
3: w′(lp) = w(lp) + ε
4: end for
5: return T ′

VII. EVALUATION

We compare the STAR algorithm with the most well-known
algorithms for Steiner tree approximation. The algorithm [17]
was the first to achieve a 2-approximation of the optimal
Steiner tree. We refer to it as DNH (for “distance network
heuristic”). The second algorithm is DPBF [10], a dynamic
programming approach which can compute an optimal tree
and performs best on a small number of terminals. The third
algorithm is BLINKS [12], which is the newest and experi-
mentally best algorithm in this field. The fourth algorithm is
BANKS [6] and its improved version BANKS II [7], which
are state-of-the-art algorithms for keyword proximity search
on relational data. We compared the algorithms both in terms
of the quality of the returned results and in terms of their
performance.

All experiments were performed on a 1.8 GHz Pentium
machine with 1 GB of main memory and an Oracle Database
(version 9.1) as the underlying persistent storage for all on-
disk experiments. All implementations are in Java.

In this study we focus on efficiency and the goodness of
Steiner trees (i.e., their weights). We do not consider the
“semantic quality” or user perceived relevance of results.
This aspect is orthogonal to the algorithmic focus of the
current paper; our earlier work [21] has shown that a Steiner-
tree-based scoring function does indeed contribute to high
relevance from a user’s viewpoint.

A. Top-1 comparison of STAR, DNH, DPBF, BANKS I, and
BANKS II

The goal of the DNH algorithm is to compute a good
approximation to the optimal Steiner tree for a given graph
and given terminal nodes. The algorithm has an approximation
ratio of 2(1 − 1

n), where n is the number of terminal nodes.
STAR, by contrast, has an approximation ratio of 4 log(n)+4.
BANKS I and BANKS II have an approximation ratio of O(n).
These bounds, however, are theoretical bounds for the worst
case. Therefore, we studied how the above algorithms perform
in practice. To compare to optimal tree weights, we also ran
DPBF. To have comparable runtimes we reimplemented DPBF
in Java3.

Datasets: We use subsets of DBLP4 and IMDB5 for
our experiments. DBLP and IMDB can be viewed as graphs
in which nodes represent entities (like author, publication,
conference, actor, movie, year, etc.), and edges represent
relations (like cited by, author of, acted in, etc.). Since the
DNH and the DPBF algorithms are designed to deal with
graphs that can be completely loaded into main memory,
we extracted from DBLP a subgraph with 15,000 nodes
and 150,000 edges (dataset DBLP). As the qualitative per-
formance of the algorithms can be influenced by different
graph topologies, a second graph consisting of 30,000 nodes
and 80,000 edges was extracted from IMDB (dataset IMDB).
Since the original DBLP and IMDB do not provide any edge
weights, we used random weights between 0 and 1 for both
graphs. Note that since these datasets do not have any kind of
taxonomic backbone, STAR uses its breadth-first heuristic for
the initialization phase.

Queries: We constructed three query sets with 3, 5 and 7
terminals, respectively. Each query set consists of 60 queries
with the same number of terminals. The terminals were chosen
randomly from the graph.

Metrics: We compare the weight of the top-1 tree re-
turned by STAR (without taxonomic information) with the
weight of the tree returned by DNH, BANKS I, and BANKS
II on the basis of optimal scores returned by DPBF. We also
measured the running times of all algorithms.

Results: Table I shows the results of our experiments on
DBLP. The best values across the competitors are in boldface.
Column 3 shows the average weight of the result over the
60 queries in the query sets returned by each algorithm. The
average weight of the tree returned by the STAR algorithm
is consistently below the average weight of the tree returned
by DNH (for the same number of terminals) and also better
than the scores returned by BANKS I and BANKS II. We
validated the statistical significance of the superiority of STAR
using a t-test at level α = 0.05. In particular, STAR returns
better results than DNH for this practical case, even though
DNH has a better approximation ratio. Column 4 shows the
average runtime of the algorithms in milliseconds. STAR

3The original C++ code was kindly provided to us by the authors of [10].
4Data downloadable from http://dblp.uni-trier.de/xml
5http://www.imdb.com/

Method # terminals avg. weight avg. runtime (ms)
STAR 3 0.61 604.2
DNH 0.7 5402.9
DPBF 0.58 33096.7

BANKS I 1.22 2096.3
BANKS II 1.81 3214.1

STAR 5 0.86 960.2
DNH 0.98 9166.7
DPBF 0.81 432361.5

BANKS I 1.87 3617.3
BANKS II 2.46 5797.5

STAR 7 1.12 1579.6
DNH 1.22 17430.9
DPBF ? ?

BANKS I 2.37 5945.5
BANKS II 3.42 9435.5

TABLE I
TOP-1 TREE COMPARISON ON DBLP

Method # terminals avg. weight avg. runtime (ms)
STAR 3 3.42 1044.5
DNH 3.37 9110.1
DPBF 2.93 18014.7

BANKS I 3.85 7153.4
BANKS II 5.31 4153.2

STAR 5 4.35 1353.5
DNH 4.33 12912.7
DPBF 4.14 121863.3

BANKS I 5.52 9671.4
BANKS II 7.17 5429.1

STAR 7 5.31 1732.9
DNH 5.31 18317.3
DPBF ? ?

BANKS I 7.47 11681.8
BANKS II 9.12 6953.7

TABLE II
TOP-1 TREE COMPARISON ON IMDB

determines the top-1 tree much faster than all its competi-
tors. The dynamic programming approach of DPBF and the
spreading activation heuristic of BANKS II seem to be less
adequate for the topology of the DBLP subgraph. The question
marks in row 13 of the table reflect the fact that DPBF
did not return a single result within 30 minutes. Table II
shows that BANKS II significantly improves its performance
relatively to its competitors on the IMDB subgraph, but is still
outperformed by STAR.

Table II shows that for the IMDB subgraph, the scores of
STAR and DNH lie very close to each other. We hypothesize
that the higher edge-to-node ratio of the DBLP subgraph
allows STAR to return clearly better scores than DNH on
the DBLP subgraph. In a denser graph STAR has more
possibilities to improve the current tree.

B. Top-k comparison of STAR, BANKS I, BANKS II, and
BLINKS

Unlike the DNH algorithm, BANKS I, BANKS II and
BLINKS can compute the top-k results for a query – like
the STAR algorithm. In this comparison we analyze the top-k

Method top-k avg. weight avg. runtime (ms)
STAR top 10 1.57 1206.3

BANKS I 2.43 5851.8
BANKS II 3.78 7895.9
BLINKS n/a 19051.4

STAR top 50 2.23 3118.3
BANKS I 3.12 7335.1
BANKS II 5.31 8928.3
BLINKS n/a 21837.9

STAR top 100 3.01 4705.1
BANKS I 4.15 9640.8
BANKS II 6.81 11071.3
BLINKS n/a 24632.3

TABLE III
TOP-K TREE COMPARISON ON DBLP

Method top-k avg. weight avg. runtime (ms)
STAR top 10 5.21 1587.2

BANKS I 6.13 10611.3
BANKS II 8.25 6619.4
BLINKS n/a 2848.97

STAR top 50 6.32 1936.8
BANKS I 7.21 12049.3
BANKS II 10.04 7892.2
BLINKS n/a 3708.6

STAR top 100 8.07 2503.2
BANKS I 9.92 13694.1
BANKS II 14.98 8873.3
BLINKS n/a 4917.7

TABLE IV
TOP-K TREE COMPARISON ON IMDB

performance of BANKS I, BANKS II, BLINKS, and STAR.
We used a Java implementation of BLINKS that was kindly
provided to us by the authors. BLINKS uses indexes in order to
speed up the query processing time. However, in order to build
these indexes and to subsequently use them during runtime,
BLINKS requires the entire graph in main memory. For this
reason, we used again the DBLP and IMDB dataset for the
comparison. As for the partitioning strategy of BLINKS, we
experimented with different block sizes and chose a block size
of 100 nodes for DBLP and a block size of 5 nodes for IMDB,
since these block sizes gave the best results.

Metrics: Since BLINKS uses a different weight metric
(the match-distributive semantics) and returns only the root
nodes of the output trees, we could not compare STAR
and BLINKS by the weight of the output trees. Hence, our
comparison with BLINKS is only with respect to the runtime.
For BANKS I, BANKS II and STAR we also report the
average scores of the output trees.

Queries: We compared the algorithms for k = 10, k = 50
and k = 100 on the same Steiner tree problem instances. For
the comparison, we constructed for each dataset (DBLP and
IMDB) 60 random queries with five terminals each.

Results: We computed the average runtime and the aver-
age score for the retrieved top-10, top-50 and top-100 results.
Table III and Table IV present the runtime performance of
STAR, BANKS I, BANKS II and BLINKS on the DBLP and

IMDB datasets, respectively. Note that in this comparison we
have discounted the times needed by BLINKS to construct the
indexes. The results show that STAR outperforms its competi-
tors in all cases. It is interesting to see that BANKS II and
BLINKS perform better on the sparser IMDB graph. During
search, BLINKS has to cope with a large number of cursors re-
sulting from a large number of partitions. Whenever BLINKS
reaches a portal p which belongs to multiple partitions, it has
to construct a new cursor for each partition in which p is a
portal. In dense datasets, it is likely that a large number of
cursors are required to complete the query processing. The
overhead of maintaining these cursors adversely affects the
overall performance. An indication for this is given by the
worse runtime performance of BLINKS on the DBLP dataset.

In contrast, STAR has to maintain only two iterators per
improvement step. Furthermore, these iterators do not visit
nodes that have a distance from the source that is higher than
the upper bound given by the loose path to be replaced. The
combination of tight upper bounds to prune the exploration
with low overhead in iterators allows STAR to outperform
BLINKS by a large margin.

C. External storage comparison of STAR and BANKS

Unlike DNH and BLINKS, BANKS and STAR can be
directly applied to graphs that do not fit into main memory.
Since these kinds of scenarios are realistic for the Steiner tree
problem, we decided to simulate such a scenario by using a
disk-resident dataset for the comparison of BANKS and STAR.

Dataset: We chose the graph of the YAGO knowledge
base [1]. It contains 1.7 million nodes and 14 million edges.
Each edge corresponds to a fact in YAGO, and has a confi-
dence score between 0 and 1 associated with it. We converted
these confidence scores into distance measures. We store the
graph in a relational database with the simple schema

EDGE(source, target, weight).

YAGO contains a DAG-shaped taxonomy of type and sub-
ClassOf edges (see Figure 1), which is exploited by STAR in
its first phase to construct the initial tree.

We implemented both BANKS I [6] and its improved
version BANKS II [7] in Java following their descriptions for
main-memory procedures. Whenever the algorithms explore
a new edge, we loaded the edge from the database. This
way, BANKS and STAR were treated uniformly as far as the
overhead for database calls is concerned.

Queries: We generated 2 sets of queries with 3 and 6
terminals each. Each query set consisted of 30 queries with
randomly chosen terminal nodes. We measured the perfor-
mance of the algorithms for the top-1, top-3 and top-6 results.

Metrics: We measured both the quality of the output trees
and the efficiency of the algorithms. As for the quality of the
trees, we report the average weight of the top-k results. As for
efficiency, we report the running times and also the number
of edges accessed during the query executions. There were
several cases for which BANKS I and BANKS II did not return

a result within 30 minutes and we had to stop the process. To
be fair, we excluded these cases from our evaluation.

Results: Table V shows the results for the performance of
STAR, BANKS I, and BANKS II. Concerning the quality of
the output trees, STAR returns better results across all values
for k and all sets of queries.

As for the efficiency of the algorithms, we note that STAR
is an order of magnitude faster than BANKS. This is also
reflected directly in the number of edges accessed by each
algorithm: STAR accesses an order of magnitude fewer edges
than its competitors. This clearly shows the enormous gains
that can be made by exploiting the taxonomic structure of the
tree to construct the initial result.

D. Summary of results

We compared STAR to different state-of-the-art algorithms.
Some of these algorithms come with specific constraints: The
DNH algorithm, for example can only handle graphs that
fit into main memory and can produce only top-1 results.
BLINKS uses indexes and a different metric and hence cannot
give an approximation guarantee. To be fair, it should be
emphasized that some of these methods were designed with
broader goals beyond Steiner-tree-like relationship queries.
Our comparison focuses on Steiner tree computation and is
fair by giving all methods the same inputs, operating condi-
tions and resources. In all experiments, STAR outperforms its
competitors.

The reason for the efficient performance of STAR is three-
fold: i) STAR uses the taxonomic structure of the graph when
possible to quickly return an initial result which is then im-
proved, ii) STAR requires only two iterators per improvement
step (independent of the number of terminals), and iii) STAR
uses fairly tight upper bounds on the lengths of the paths and
prunes the possible paths that can be included in the result
tree.

VIII. CONCLUSION

This paper has addressed the problem of efficiently answer-
ing relationship queries over entity-relation-style data graphs.
The STAR algorithm can exploit taxonomic structures that
are inherent in many knowledge-base graphs (e.g., the isA
hierarchy) for fast computation of an initial seed solution.
However, it does not depend on this option, and can use other
initializations as well. Its main power for efficiency and result
quality comes from iteratively improving the seed tree by a
very fast shortest-path algorithm for subtrees defined by the
notion of loose paths.

We proved that STAR achieves an O(log n) approximation
for the optimal Steiner tree, which is significantly better than
the worst-case approximation quality given by prior database
methods [6], [7]. While the DNH method for in-memory
graphs has a much better worst-case approximation guarantee
than STAR, our experiments give evidence that STAR achieves
at least the same result quality (Steiner tree weight) as DNH
and other database methods or better on practically relevant
datasets.

3 terminals 6 terminals
top-1 STAR BANKS I BANKS II STAR BANKS I BANKS II

avg. score 0.22 0.260 0.234 0.337 0.385 0.368
avg. # acc. edges 6981 84171 81462 9559 372634 365004

avg. run time (ms) 12440.6 131313.6 104148.5 15733.1 391601.0 385401.5
top-3 STAR BANKS I BANKS II STAR BANKS I BANKS II

avg. score 0.428 0.488 0.454 1.085 1.193 1.255
avg. #acc. edges 18027 153078 132141 27085 460521 409414

Avg. run time (ms) 34814.7 190547.7 156535.3 41187.3 483328.4 427276.3
top-6 STAR BANKS I BANKS II STAR BANKS I BANKS II

avg. score 2.102 2.453 2.441 3.315 4.148 4.031
avg. # acc. edges 43474 159130 175045 76259 503054 491786

avg. run time (ms) 71058.2 197543.7 205359.6 91157.2 511811.0 491785.5

TABLE V
YAGO: QUALITY OF RESULTS AND EFFICIENCY OF STAR, BANKS I & II

The motivation for this database-algorithmic work has been
to support graph-based information retrieval and knowledge
queries over large datasets in the spirit of NAGA [21], where
STAR closes a big efficiency-oriented gap. Our future work
will look into more complex search patterns over this kind of
rich relationship-graphs, using STAR as a key building block.

STAR has been implemented as a query answering com-
ponent of the NAGA system. NAGA is available online at:
http://www.mpi-inf.mpg.de/˜kasneci/naga/

IX. ACKNOWLEDGEMENTS

We thank the authors of [12] and the authors of [6], [7]
for providing us with the Java code of BLINKS and BANKS.
We also thank the authors of [10] for providing us with the
original C++ code of DPBF.

REFERENCES

[1] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A Core of
Semantic Knowledge,” in Proc. of WWW, 2007.

[2] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press,
1998. [Online]. Available: citeseer.ist.psu.edu/lin98wordnet.html

[3] U. Leser, “A query language for biological networks,” Bioinformatics,
vol. 21, no. 2, pp. 33–39, 2005.

[4] C. Plake, T. Schiemann, M. Pankalla, J. Hakenberg, and U. Leser, “Ali
baba: Pubmed as a graph,” Bioinformatics, vol. 22, 2006.

[5] S. Trissl and U. Leser, “Fast and practical indexing and querying of very
large graphs,” in Proc. of SIGMOD, 2007.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using BANKS,” in Proc.
of ICDE, 2002.

[7] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional expansion for keyword search on graph
databases,” in Proc. of VLDB, 2005.

[8] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A system for
keyword-based search over relational databases,” in Proc. of ICDE,
2002.

[9] V. Hristidis and Y. Papakonstantinou, “DISCOVER: Keyword search in
relational databases,” in Proc. of VLDB, 2002.

[10] B. Ding, J. Yu, S. Wang, L. Qing, X. Zhang, and X. Lin, “Finding top-k
min-cost connected trees in databases,” in Proc. of ICDE, 2007.

[11] B. Kimelfeld and Y. Sagiv, “Finding and approximating top-k answers
in keyword proximity search,” in PODS, 2006, pp. 173–182.

[12] H. He, H. Wang, J. Yang, and P. Yu, “BLINKS: Ranked keyword
searches on graphs,” in Proc. of SIGMOD, 2007.

[13] K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword proximity search
in complex data graphs,” in SIGMOD Conference, 2008, pp. 927–940.

[14] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: an effective
3-in-1 keyword search method for unstructured, semi-structured and
structured data,” in SIGMOD Conference, 2008, pp. 903–914.

[15] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal, “Query relaxation by
structure and semantics for retrieval of logical web documents,” in IEEE
Transactions on Knowledge and Data Engineering, 2002.

[16] E. Ihler, “Bounds on the quality of approximate solutions on the
group steiner tree problem,” in 16th International Workshop on Graph-
Theoretic Concepts in Computer Science, 1991.

[17] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner
trees,” vol. 15, no. 2, June 1981, pp. 141–145.

[18] V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient ir-style
keyword search over relational databases,” in Proc. of VLDB, 2003.

[19] K. Anyanwu, A. Maduko, and A. P. Sheth, “Sparq2l: towards support
for subgraph extraction queries in rdf databases,” in WWW, 2007, pp.
797–806.

[20] A. Adya, J. A. Blakeley, S. Melnik, and S. Muralidhar, “Anatomy of the
ado.net entity framework,” in SIGMOD Conference, 2007, pp. 877–888.

[21] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum,
“NAGA: Searching and Ranking Knowledge,” in 24th International
Conference on Data Engineering (ICDE 2008). IEEE, 2008.

[22] H. Tong and C. Faloutsos, “Center-piece subgraphs: problem definition
and fast solutions,” in KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining.
New York, NY, USA: ACM, 2006, pp. 404–413.

[23] C. Faloutsos, K. S. Mccurley, and A. Tomkins, “Fast discovery of
connection subgraphs,” in KDD ’04: Proceedings of the 2004 ACM
SIGKDD international conference on Knowledge discovery and data
mining. New York, NY, USA: ACM Press, 2004, pp. 118–127.
[Online]. Available: http://dx.doi.org/10.1145/1014052.1014068

[24] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal, “Retrieving and
organizing web pages by “information unit”,” in WWW, 2001, pp. 230–
244.

[25] J. Graupmann, “The spheresearch engine for graph-based search on
heterogeneous semi-structured data,” Ph.D. dissertation, Universität des
Saarlandes, May 2006.

[26] K. Mehlhorn, “A faster approximation algorithm for the steiner problem
in graphs,” Inf. Process. Lett., vol. 27, no. 3, pp. 125–128, 1988.

[27] S. Dreyfus and R. Wagner, “The steiner problem in graphs,” in Networks,
1972.

[28] R. B. Muhammad, “A parallel local search algorithm for euclidean
steiner tree problem,” in SNPD-SAWN ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 157–164.

[29] O. Faroe, D. Pisinger, and M. Zachariasen, “Local search for final
placement in vlsi design,” in ICCAD, 2001, pp. 565–572.

