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Abstract In this paper, we consider the Radar Placement and Power Assignment problem
(RPPA) along a river. In this problem, a set of crucial points in the river are required to be
monitored by a set of radars which are placed along the two banks. The goal is to choose
the locations for the radars and assign powers to them such that all the crucial points are
monitored and the total power is minimized. If each crucial point is required to be monitored
by at least k radars, the problem is a k-Coverage RPPA problem (k-CRPPA). Under the
assumption that the river is sufficiently smooth, one may focus on the RPPA problem along
a strip (RPPAS). In this paper, we present an O(n9) dynamic programming algorithm for the
RPPAS, where n is the number of crucial points to be monitored. In the special case where
radars are placed only along the upper bank, we present an O(kn5) dynamic programming
algorithm for the k-CRPPAS. For the special case that the power is linearly dependent on the
radius, we present an O(n log n)-time 2

√
2-approximation algorithm for the RPPAS.

Keywords Radar placement · Power assignment · Coverage

1 Introduction

The detection of targets in a region of interest is an important application in the real world. In
such an application, the sensing equipment collect information from regions in their obser-
vation range, make preliminary decisions about the absence or presence of the targets, and
then transmit the information to a base station for collective decision. One possible sensing
technology is radar. Since the power consumed by a radar is dependent on its observation
range, a natural question is how to locate the radars and how to assign the powers such that the
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total power is minimized while the detection requirement is fulfilled. We call such a problem
as the Radar Placement and Power Assignment problem (RPPA).

In this paper, we study the RPPA problem along a river, in which a set of crucial points
in the river are required to be monitored by a set of radars placed along the two banks. In
some real applications, it is not sufficient for every crucial point to be merely monitored, but
also monitored by at least k radars. This can be modeled as the k-Coverage Radar Placement
and Power Assignment problem (k-CRPPA). In some cases, the locations of the radars are
known. To save energy, one only needs to activate a small subset of the radars and assign
proper energy to them such that the monitoring requirement is satisfied. Activating may be
done from time to time, when the query of crucial points changes dynamically. Such an
application can be modeled as a Discrete RPPA problem (DRPPA), in which the task is to
choose a subset of locations from a set of given locations instead of placing radars at any
place along the two banks.

Suppose the shape of the river is sufficiently smooth. Under this assumption, it is rea-
sonable to view the river as piecewise strips of finite lengths. Hence we may focus on the
problem for a strip (the coverage of the whole river can be found by piecing such solutions
together with a little additional payment at the concatenation points). The above problems
for a strip are abbreviated as RPPAS, k-CRPPAS, and DRPPAS, respectively.

In this paper, we give an O(n9) algorithm for the RPPAS problem using dynamic pro-
gramming, where n is the number of crucial points in the strip. Unfortunately, similar idea
can not be used to solve the k-CRPPAS problem. For a simpler case in which radars are
only placed along the upper bank, we give an O(kn5) algorithm for k-CRPPAS. It should
be noted that our dynamic programming algorithm can also solve the DRPPAS problem.
Suppose there are m1 and m2 possible locations for the radars on the upper bank and the
lower bank, respectively, our method produces an O(n(m1m2)

2) algorithm. In particular, if
the width of the river can be ignored, i.e., if we regard the river as a line segment, then the
algorithm takes time O(nm2), where m is the number of possible locations for the radars.
This improves on the O((n + m)3) algorithm in [13]. In the special case that α = 1, the total
energy power is the sum of the radii. We present an O(n log n)-time 2

√
2-approximation

algorithm for this special case.

2 Related work

Our work falls into the field of geometric covering, in which some points or some areas are
required to be covered by geometric objects [14]. For example, Chvátal [7] introduced the
Art Gallery Problem, in which cameras are to be placed to watch every wall of an art gallery
room. The room is assumed to be a polygon with n sides and h holes, and the cameras are
assumed to have a viewpoint of 360◦ and rotate at an infinite speed. It was proved that at
most �(n + h)/3� cameras are sufficient [11]. A powerful approach called shifting strategy
was proposed by Baker [3] and Hochbaum and Maas [10], by which numerous geometric
covering problems have polynomial time approximation schemes (PTAS), i.e., which can
be approximated to a degree of 1 + ε for any real positive number ε. As a special case, the
disk cover problem in which disks have the same radii and the locations for the disks are
not restricted to a given set of possible locations but rather may be chosen at any point of
the plane has a PTAS. Disk cover problem with given possible locations was studied in [8],
in which the MAX-TSN problem and MIN-BS problem are considered. For the MAX-TSN
problem, the aim is to find at most k base stations such that the number of totally supplied
demand nodes is maximal. For the MIN-BS problem, the aim is to find a minimum number of
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base stations such that at least k demand nodes are totally supplied. Under the restriction that
the distance between any two base stations is at least a constant d , they presented a PTAS.

The coverage problem has a wide application in wireless sensor networks. In [12], Huang
and Tseng studied the problem of deciding whether an area is sufficiently covered, in the
sense that every point in the area is covered by at least k sensors. They proved that as long
as the perimeter of the sensors are sufficiently covered, the whole area is sufficiently cov-
ered. In [15], Wang et al. studied the relationship between coverage and connectivity. They
proved that if a region is k-covered then the sensor network is k-connected as long as the
communication range is at least twice of the sensing range. In [9], Gupta et al. studied the
problem of query execution, in which when a query is sent to the sensor network asking an
interested geometric region to be covered, a small subset of sensors has to be selected such
that the selected network is connected and satisfies the coverage requirement. They presented
a greedy algorithm with performance guarantee O(log n), where n is the number of sensors
in the network. Some works studying the energy-efficient coverage problems can be found
in [5,6] etc.

The river coverage problem was also studied in [1], in which the authors ignored the width
of the river and modeled the problem as covering a line segment with variable radius disks.
In their model, every point on the whole line segment has to be covered. When the radars are
of the same type, a simple solution was given. When the radars are of different types, they
designed a branch-and-bound algorithm.

The line segment coverage problem was also studied in [2,4,13]. For the problem in
which a set of m fixed locations for radars and a set of n locations for the points are given,
all located along a fixed line, Lev-Tov and Peleg [13] gave an O((n + m)3) dynamic pro-
gramming algorithm. Bilò et al. [13] showed that the problem is polynomial time solvable
by reducing it to an integer linear program with totally unimodular matrix. To lower the time
complexity, Lev-Tov and Peleg [13] gave a linear-time 4-approximation algorithm. Alt et
al. [2] gave a linear-time 3-approximation algorithm and a near-linear-time 2-approximation
algorithm. For the problem in which radars are placed on a line to cover points in the upper
half plane, Alt et al. [2] designed an O(n4 log n) dynamic programming algorithm, and an
O(n log n)2

√
2-approximation algorithm. In fact, their method is valid for such covering by

any L p disks, with varying corresponding approximation ratios.

3 Dynamic programming algorithm for RPPAS

We adopt the convention that the power consumed by a radar u with observation range r(u)

is proportional to r(u)α , where α is usually taken to be a constant between 1 and 4. Hence
to assign power to a radar is equivalent to determine its observation range. For two points
u, v, we use d(u, v) to denote the Euclidean distance between u and v. The RPPAS problem
is formally defined as follows:

Definition 1 (RPPAS) Let P be a set of points in a horizontal strip. The problem is to place
a set S of radars along the two boundaries of the strip and determine the observation range
r(u) for each radar u ∈ S such that for each point p ∈ P , there is at least one radar u ∈ S
satisfying d(u, p) ≤ r(u), and the total power w(S) = ∑

u∈S w(u) is as small as possible,
where w(u) = r(u)α is the power assigned to u and α ∈ [1, 4] is a constant.

In this section, we present a dynamic programming algorithm which can find the exact
solution in time O(n9).
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Suppose the strip is between lines y = y1 and y = y2 with y1 < y2, called lower bank
and upper bank respectively. A candidate disk is the smallest disk whose center is located
on the upper bank or the lower bank such that it covers a given set of points (which is
equivalent to that its circumference contains one or two points). Since α ≥ 1, it is easy to
see that there exists an optimal solution composed of only candidate disks. For simplicity
of statement, we call a candidate disk whose center is on the upper (resp. lower) bank as
an upper (resp. a lower) disk. We also regard the empty set as an upper disk as well as a
lower disk, with radius zero. Suppose there are tu upper disks and tl lower disks. Clearly,

tu, tl ≤ 2
(

n + n(n−1)
2

)
+ 2 = O(n2).

For two upper disks u and u′, we say that u is to the left of u′ if the x-coordinate of
the center of u is no greater than the x-coordinate of the center of u′. The same convention
applies to two lower disks. Suppose the points in the strip are ordered from left to right as
p1, p2, . . . , pn (breaking ties arbitrarily). For 1 ≤ j ≤ n, an upper disk u and a lower disk l
with p j ∈ u ∪ l, define S( j; u, l) to be the optimal solution containing only candidate disks
such that

(i) all points p1, . . . , p j are covered by the disks in S( j; u, l);
(ii) u is the rightmost one among all upper disks in S( j; u, l);

(iii) l is the rightmost one among all lower disks in S( j; u, l).

For convenience of statement, a set of disks satisfying the above conditions but not necessar-
ily having the minimum total weight is called a feasible solution for the triple ( j, u, l). The
total weight of disks in S( j; u, l) is denoted by s( j; u, l). Then s( j; u, l) can be determined
in the following way. If p j �∈ u ∪ l, set s( j; u, l) = ∞. If p j ∈ u ∪ l, then

s( j; u, l) = min{s( j − 1; u′, l ′) + δ(u′ �= u)w(u) + δ(l ′ �= l)w(v)}, (1)

where δ(u′ �= u) is 1 if u′ �= u and is 0 if u = u′, and the minimum is taken over all upper
disks u′ to the left of u and all lower disks l ′ to the left of l. We are to show that the solution
corresponding to min{s(n; u, l) | u is an upper disk and l is a lower disk} is an optimal
solution to RPPAS.

Theorem 2 The above dynamic programming algorithm correctly computes an optimal solu-
tion to RPPAS in time O(n9).

Proof We are to show the equality of (1).
First, we show the ‘≤’ part. Suppose p j ∈ u ∪ l. For every pair of u′, l ′ as described

above such that s( j − 1; u′, l ′) < ∞, S( j − 1; u′, l ′) ∪ {u, l} is clearly a feasible solution
for ( j, u, l). Hence

w
(
S( j − 1; u′, l ′) ∪ {u, l}) ≥ s( j; u, l). (2)

Since in an optimal solution, no disk is contained completely in another one, we see that if
u′ �= u, then u �∈ S( j −1; u′, l ′) (otherwise u and u′ would have the same center by condition
(ii) of S( j; u, l) and S( j − 1; u′, l ′), and thus one is contained in the other). The same is true
for l ′ and l. Hence

w
(
S( j − 1; u′, l ′) ∪ {u, l}) = s( j − 1; u′, l ′) + δ(u′ �= u)w(u) + δ(l ′ �= l)w(v). (3)

Combining inequality (2) and equality (3) with the arbitrariness of u′, l ′, the ‘≤’ part of (1)
is proved.

For the ‘≥’ part, consider an optimal solution S( j; u, l). If p j−1 ∈ u ∪ l, then S( j; u, l)
is a feasible solution for ( j − 1, u, l), and thus s( j; u, l) ≥ s( j − 1; u, l) ≥ the righthand
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Fig. 1 The points covered by u2
to the left of pi are all covered by
u1

side of (1). Hence suppose p j−1 �∈ u ∪ l. We first claim that for an integer i < j and two
upper disks u1, u2 ∈ S( j; u, l) such that pi ∈ u1 \ u2 and u1 is to the left of u2, all the
points to the left of pi which are covered by u2 are also covered by u1. In fact, since in an
optimal solution, no disk is contained completely in another disk, we see that the positions
of u1 and u2 are as in Fig. 1, and pi locates to the left of the vertical line through the two
intersection points of u1 and u2. Then the claim follows easily. Similar claim also holds for
lower disks. Suppose, without loss of generality, that p j−1 is contained in an upper disk. Let
u′ be the rightmost upper disk of S( j; u, l) containing p j−1. Then u′ must be the rightmost
one among all upper disks in S( j; u, l) \ {u}. Otherwise, let u′′(�= u′) be the rightmost upper
disk in S( j; u, l) \ {u}. Then p j−1 ∈ u′ \ u′′ and u′ is to the left of u′′. By the above claim,
we see that points in u′′ which are to the left of p j−1 are all covered by u′ ∪ u ∪ l. Hence
deleting u′′ from S( j; u, l) results in another feasible solution for ( j, u, l) with lower weight,
which contradicts the optimality of S( j; u, l). Also by the above claim, since p j−1 ∈ u′ \ u
and u′ is to the left of u, all points in u which are to the left of p j−1 are also covered
by u′. Now we see that S( j; u, l) \ {u} is a feasible solution for ( j − 1, u′, l), and thus
s( j; u, l) ≥ s( j − 1; u′, l) + w(u) ≥ the righthand side of (1).

For each j = 1, 2, . . . , n, the algorithm maintains a table of size tu × tl , each entry can
be computed in at most O(tu tl) time. Since tu, tl ≤ O(n2), the computation time is at most
O(n(tu tl)2) which is O(n9). 
�

The above method can also be applied to other Radar Placement models with the following
conditions, and possibly some of their combinations.

(a) The set of candidate positions for radars is given.
(b) The radii of the radars are fixed.
(c) The weight is a more complicated function.

4 Dynamic programming algorithm for k-CRPPAS along one bank

In this section, we consider the k-CRPPAS problem which is formally defined as follows:

Definition 3 (k-CRPPAS) The k-Coverage Radar Placement and Power Assignment prob-
lem for a strip is a RPPAS problem with the additional requirement that for each point p ∈ P ,
there are at least k radars u1, . . . , uk ∈ S satisfying d(ui , p) ≤ r(ui ) (i = 1, . . . , k).

Assume that multiple radars can be placed at a same location. Hence a solution to the
problem is a multiset, counting multiplicity when some radars with the same radii are located
at the same position. To distinguish with the union operation ‘∪’ for an ordinary set, we use
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S + {u} to denote adding an element u to the multiset S, even though some copy of u is
already in S. For simplicity of statement, S + {0} means nothing is added into S.

In the following, we assume that radars can only be placed along the upper bank. We call
such a problem a One Bank RPPAS problem. In this case, the k-CRPPAS problem can be
solved dynamically in the following way.

For 1 ≤ j ≤ n, an integer 1 ≤ m j ≤ k, an upper disk u with p j ∈ u, define S( j, m j ; u)

to be the optimal solution consists of only upper disks such that

(i) every point pi with i ≤ j − 1 is covered by at least k disks in S( j, m j ; u), and p j is
covered by at least m j disks in S( j, m j ; u);

(ii) u is the rightmost one among all upper disks in S( j, m j ; u).

A solution satisfying the above conditions but not necessarily optimal is called a feasible
solution for ( j, m j , u). For convenience of statement, we allow m j = 0 and let S( j, 0; u) =
S( j −1, k; u). Denote by s( j, m j ; u) = w(S( j, m j ; u)). Then s( j, m j ; u) can be calculated
as follows. If p j �∈ u, set s( j, m j ; u) = ∞. If p j ∈ u, then

s( j, m j ; u) = min{s( j, m j − 1; u′) + γ · w(u)}, (4)

where the minimum is taken over all upper disks u′ to the left of u, and the function γ is deter-
mined as follows: in the case that u′ �= u, set γ = 1; in the case u′ = u, if S( j, m j − 1; u′)
covers p j by at least m j times, then γ = 0, if S( j, m j − 1; u′) covers p j by exactly m j − 1
times, then γ = 1.

We are to show that the solution corresponding to min{s(n, k; u)} is an optimal solution
to the One Bank k-CRPPAS.

Theorem 4 The above dynamic programming algorithm computes an optimal solution for
One Bank k-CRPPAS problem in time O(kn5).

Proof Suppose p j ∈ u. For any optimal solution S( j, m j − 1; u′) for ( j, m j − 1, u′) with
s( j, m j − 1; u′) < ∞, where u′ is to the left of u, by the definition of γ and the assumption
p j ∈ u, we see that S( j, m j − 1; u′) + {γ · u} is a feasible solution for ( j, m j , u). Hence
s( j, m j ; u) ≤ s( j, m j − 1; u′) + γ · w(u). The ‘≤’ part of (4) follows from the arbitrariness
of u′.

For the ‘≥’ part, if m j > 1, then S( j, m j ; u) is a feasible solution for ( j, m j − 1, u), and
thus s( j, m j ; u) ≥ s( j, m j − 1; u) ≥ the righthand side of (4). Hence suppose m j = 1. We
are to show that

s( j, 1; u) ≥ min{s( j − 1, k; u′) + γ · w(u)}. (5)

If p j−1 ∈ u, then S( j, 1; u) is also a feasible solution for ( j − 1, k, u) and thus (5) holds.
Hence suppose p j−1 �∈ u. Suppose the set of upper disks in S( j, 1; u) containing point
p j−1 are u1, u2, . . . , uq ordered from left to right. Clearly, u1, . . . , uq �= u. Since p j−1 is
covered by at least k upper disks in S( j, m j ; u), we have q ≥ k. By the claim in the proof of
Theorem 2,

every point to the left of p j−1 which is covered by u
is also covered by u1, u2, . . . , uq .

(6)

Hence S( j, 1; u) − {u} (counting multiplicity) covers every point p1, . . . , p j−1 at least k
times. Set u′ = uq . Similarly to the proof of Theorem 2, we see that u′ is the rightmost
disk among all disks in S( j, 1; u) − {u}. Hence S( j, 1; u′) − {u} is a feasible solution for
( j − 1, k; u′). It follows that s( j, 1; u) ≥ s( j − 1, k; u′) + w(u) ≥ the righthand side of (5).

The time complexity of the algorithm is O(nkt2
u ) which is O(kn5). 
�

123



J Glob Optim (2012) 52:729–741 735

Unfortunately, the above idea failed to be generalized to solve the k-CRPPAS problem
when radars can be placed on both banks. The difficulty lies in (6), which does not hold if
some ui is a lower disk, and thus some point to the left of p j−1 might be covered less than
k times by S( j, 1; u) − {u}.

5 Approximation algorithm for radii sum

Since the time complexity of the dynamic programming algorithm in Sect. 3 is very high,
we look for approximation algorithms to the RPPAS problem. In this section, we present
an O(n log n)-time 2

√
2-approximation algorithm for the special case α = 1. Such a case

occurs when the transmission focuses in a narrow angle beam whose direction can change
from time to time and adapt to the needs of the network. The study for such a case may serve
as a basis towards more general non-linear cases.

When α = 1, the total power to be minimized is the radii sum
∑

r(u). The advantage of
this case is that in an optimal solution, the upper disks are mutually disjoint. In fact, if two
upper disks u1 and u2 have a non-empty intersection (suppose u1 is to the left of u2 and one
is not contained in the other), then they can be replaced by a new upper disk u with radius
at most r(u1) + r(u2) whose center is at the middle point of the line segment between the
leftmost point of u1 and the rightmost point of u2 (see Fig. 2). We call such a replacement
as mergence. Clearly, mergence does not increase the radii sum. The same observation holds
for lower disks.

We first introduce some terminologies. For a set U of upper disks, the diameter Diam(U)

is the distance between the leftmost point and the rightmost point of all disks in U . The same
concept Diam(L) applies to a set L of lower disks. Suppose the height of the strip is a. A
point in P is called an upper point if it lies at most a/2 distance away from the upper bank,
otherwise, it is called a lower point.

Our algorithm finds a set of upper disks U covering the set of upper points, and a set of
lower disks L covering the set of lower points, respectively. Then it outputs U ∪ L. Next, we
show how to find U . The set L can be found similarly.

Clearly, disks in U are mutually disjoint. By replacing ‘upper’ with ‘lower’ in Algorithm 5,
we obtain a set L of mutually disjoint lower disks covering the set of lower points. It should
be pointed out that finding U and L are two independent processes, upper disks can only be
merged into upper disks, lower disks can only be merged into lower disks. It should be noted
that although U is found by considering only upper points, some lower points can also be

Fig. 2 Merging u1 and u2 into u
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Algorithm 5
Input: An set of upper points P .
Output: A set U of upper disks covering all points in P .
1: Order points in P from left to right as p1, . . . , ps (breaking ties arbitrarily).
2: Set U = ∅, u0 = ∅, i = 1.
3: while P �= ∅ do
4: Let p be the leftmost point in P .
5: Let ui be the upper disk which has p as the lower extreme.
6: if ui ∩ ui−1 �= ∅ then
7: merge ui−1 and ui to a larger upper disk u.
8: Set U = (U − {ui−1}) ∪ {u}, ui−1 = u.
9: Delete from P all points covered by u.
10: else
11: Set U = U ∪ {ui }
12: Delete from P all points covered by ui .
13: set i = i + 1.
14: end if
15: end while
16: Output U .

Fig. 3 An illustration for the
case |U∗| = 1 and L∗ = ∅

covered by U (if a mergence occurs such that the radius of the upper disk is enlarged to be
larger than half of the width of the strip).

Theorem 6 Algorithm 5 computes in linear time an approximation solution to RPPAS prob-
lem for the case α = 1 with approximation ratio 2

√
2.

Proof The time complexity is obvious. Next, we show the approximation ratio.
Let U∗ ∪L∗ be an optimal solution, and U ∪L be the output of Algorithm 5. We illustrate

the proof step by step.

Step 1 First, consider the case that |U∗| = 1 and L∗ = ∅. In this case, all points belong to
u∗, where u∗ is the only disk in U∗. Let u1, . . . , us be the upper disks in U and l1, . . . , lt be
the lower disks in L, ordered from left to right, respectively. In the following, we show that

Diam(U) ≤ √
2Diam(u∗) (7)

and

Diam(L) ≤ √
2Diam(u∗). (8)
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Fig. 4 The protruding length of
u1 is at most

r1 − (r −
√

r2 − r2
1 )

Fig. 5 The case when u1 is
obtained from merging
v1, . . . , vl

Since upper disks in U are mutually disjoint, we see that among all upper disks, only u1 can
protrude to the left of u∗, only uk can protrude to the right of u∗ (see Fig. 3). If u1 is a disk with-
out being merged, then it has p1 as its lower extreme. Suppose the radii of u∗ and u1 are r and r1

respectively. As shown in Fig. 4, the protruding length is at most r1−(r −
√

r2 − r2
1 )

�= f (r1)

and the maximum of f (r1) is reached when r1 = r/
√

2, which yields fmax = (
√

2−1)r . If u1

is a disk resulted from a sequence of merging disks v1, v2, . . . , vl , we see from Fig. 5 that the
protruding length does not exceed that of v1. Hence (

√
2−1)r is also the maximum protrud-

ing length of u1 to the left of u∗. The same analysis holds for us by considering the last disk
merged into us . As a consequence, Diam(U) ≤ 2r +2(

√
2−1)r = 2

√
2r = √

2Diam(u∗).
Hence inequality (7) is proved.

Next, consider the diameter of L. If there is no lower point, then the algorithm yields
L = ∅, and thus Diam(L) = 0. Hence we suppose there exists at least one lower disk.
As a consequence r > a/2, and all the lower points lie in the shaded part of Fig. 6. Project
the leftmost lower point and the rightmost lower point onto the lower bank, suppose the
projection points are bl and br respectively (see Fig. 6). Then by a simple geometric analysis
as shown in Fig. 7, we see that the distance between bl and br is at most 2

√
r2 − a2/4. Next,

consider the protruding part of l1 to the left of bl . If l1 is a disk without being merged, then
it has the leftmost lower point as its upper extreme. Since a lower point is at most a/2 away
from the lower bank, we see that l1 protrudes to the left of bl by at most a/2. If l1 is a disk
obtained by a sequence of mergence, then by a same argument as for the upper disks, we see
that l1 still protrudes to the left of bl by at most a/2. Similarly, lt protrudes to the right of br

by at most a/2. Hence
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Fig. 6 All lower points lie in the
shaded part

Fig. 7 The projection distance
between the left most lower point
and the rightmost lower point is

at most 2
√

r2 − a2
4

Diam(L) ≤ 2
√

r2 − a2/4 + a = 2r

(√

1 −
( a

2r

)2 + a

2r

)

. (9)

Recall that 0 < a/(2r) < 1, we see from inequality (9) that Diam(L) ≤ 2
√

2r =√
2Diam(u∗), with equality when a/(2r) = 1/

√
2. Inequality (8) is proved.

Since disks in U are mutually disjoint and disks in L are mutually disjoint, we see from
inequalities (7) and (8) that

∑

u∈U
r(u) +

∑

l∈L
r(l) ≤ 1

2
(Diam(U) + Diam(L)) ≤ √

2Diam(U∗) = 2
√

2r(u∗).

The approximation ratio follows.

Step 2 Consider the case that |U∗| > 1 and L∗ = ∅. Suppose U∗ = {u1, . . . , u∗
s∗ }. The

proof idea is the same as above. The difference here is illustrated in Fig. 8: some u j may
protrude to the right of some u∗

i by more than (
√

2 − 1)r∗
i , if u j is obtained by a sequence

of merging disks v1, . . . , vl . Such a case occurs only when vl ∈ u∗
i+1. Let q be the last

index such that vq has its lower extreme in u∗
i . Then q < l and vq+1 ∈ u∗

i+1. Let u(1)
j

be the disk obtained from merging v1, . . . , vq and u(2)
j be the disk obtained from merg-

ing vq+1, . . . , vl (see Fig. 9). Then u j can be obtained from merging u(1)
j and u(2)

j , and

Diam(u j ) ≤ Diam(u(1)
j )+ Diam(u(2)

j ). Furthermore, u(1)
j protrudes to the right of u∗

i by at
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Fig. 8 Disk u j may protrude to
the right of u∗

i by more than

(
√

2 − 1)r∗
i

Fig. 9 Replacing disk u j by two

disks u(1)
j and u(2)

j

most (
√

2−1)r∗
i and u(2)

j protrudes to the left of u∗
i+1 by at most (

√
2−1)r∗

i+1. Denote by Ũ
the set of upper disks obtained from U by replacing all such u j ’s by corresponding u(1)

j ’s and

u(2)
j ’s. Then similarly to the first step, we see that for each u∗

i , the set of disks in Ũ has radii

sum not more than
√

2r(u∗
i ). Notice that disks in Ũ may intersect only in their protruding

part, we see that
∑

u∈U r(u) ≤ ∑
ũ∈Ũ r (̃u) ≤ √

2
∑

u∗∈U∗ r(u∗). Similar argument holds
for Diam(L). Then the approximation ratio follows similarly to that in Step 1.

The case when U∗ = ∅ can be considered symmetrically.

Step 3 For the general case when both U∗ and L∗ are non-empty, we first illustrate the proof
idea by considering |U∗| = |L∗| = 1. Let U∗ = {u∗} and L∗ = {l∗}. If all the upper points
are covered by u∗ and all the lower points are covered by l∗, then similarly to the proof of
(7), it can be shown that Diam(U) ≤ √

2Diam(u∗) and Diam(L) ≤ √
2Diam(l∗), and

thus
∑

u∈U r(u) + ∑
l∈L r(l) ≤ √

2(r(u∗) + r(l∗)).
In the following, we assume that some upper point is in l∗ \ u∗ and some lower point is

in u∗ \ l∗ (see Fig. 10). In Fig. 11, we depict U and L which are the outputs of the algorithm
applied to the set of upper points and the set of lower points, respectively. Let P1 be the set
of points covered by u∗ and let P2 be the set of points covered by l∗. Apply Algorithm 5
to P1 and P2, respectively. Suppose the outputs are (U1, L1) and (U2, L2), respectively
(see Fig. 12). By the analysis in Step 1, we have

∑
u∈U1

r(u) + ∑
l∈L1

r(l) ≤ 2
√

2r(u∗)
and

∑
u∈U2

r(u) + ∑
l∈L2

r(l) ≤ 2
√

2r(l∗). By noticing that U can be obtained by merg-
ing U1 with U2, without increasing the total power, we have

∑
u∈U r(u) ≤ ∑

u∈U1
r(u) +∑

u∈U2
r(u). Symmetrically,

∑
l∈L r(l) ≤ ∑

l∈L1
r(l) + ∑

l∈L2
r(l). Hence

∑
u∈U r(u) +

∑
l∈L r(l) ≤ 2

√
2(r(u∗) + r(l∗)).

For the case when |U∗| > 1 or |L∗| > 1, the approximation ratio can be proved by
combining the above analysis with the idea in Step 2. 
�
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Fig. 10 Some upper point is in
l∗ and some lower point is in u∗

(a)

(b)

Fig. 11 U and L are the outputs of the algorithm applied to the set of upper points and the set of lower points,
respectively

(b)(a)

Fig. 12 The outputs of the algorithm applied to P1 and P2, respectively

6 Conclusion

In this paper, we study the problem of monitoring crucial points in a river by radars with vari-
able radii which are placed along the banks. Under the assumption that the river is sufficiently
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smooth, the focus is to solve the problem for a strip. An O(n9) dynamic programming algo-
rithm is presented, where n is the number of crucial points to be monitored. We also presented
an O(kn5) dynamic programming algorithm for the k-coverage radar placement problem in
which radars are placed only along one bank. These ideas can be easily generalized to the
discrete radar assignment problems. The problem of finding an exact polynomial algorithm
to k-cover the points in which radars can be placed along the two banks is a topic for further
research. For the case α = 1, an O(n log n)-time 2

√
2-approximation algorithm is given. It

should be noted that the key to this 2
√

2-approximation algorithm is that ‘mergence does not
increase the total power, and thus in an optimal solution all disks are disjoint’. This property
holds for any α ≤ 1. Hence the 2

√
2-approximation algorithm is also valid for any α < 1.
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