
Efficient Data Retrieval Scheduling for
Multi-Channel Wireless Data Broadcast

Zaixin Lu∗, Yan Shi†, Weili Wu∗, and Bin Fu‡
∗Department of Computer Science, University of Texas at Dallas, Richardson, Texas

†CSSE Department, University of Wisconsin - Platteville, Platteville, Wisconsin
‡Department of Computer Science, University of Texas - Pan American, Edinburg, Texas

Abstract—Wireless data broadcast is an efficient technique
of disseminating data simultaneously to a large number of
mobile clients. In many information services, the users may
query multiple data items at a time. In this paper, we study the
data retrieval scheduling problem from the client’s point of
view. We formally define the Largest Number Data Retrieval
(LNDR) problem with the objective of downloading the largest
number of requested data items in a given time duration,
and the Minimum Cost Data Retrieval (MCDR) problem
which aims at downloading a set of data items with the
minimum energy consumption. When the time needed for
channel switching can be ignored, a Maximum Matching
optimal algorithm is exhibited for LNDR which requires only
polynomial time; when the switching time cannot be neglected,
LNDR is proven to be NP−hard and a greedy algorithm
with constant approximation ratio is developed. We also prove
that the MCDR problem is NP−hard to be approximated
within to any nontrivial factor and a parameterized heuristic
is devised to solve MCDR non-optimally.

Index Terms—Wireless data broadcast, Multi-channel, Data
retrieval, NP−hard, Approximation and Inapproximation

I. INTRODUCTION

Wireless data broadcast has been a popular data dissem-
ination method in the mobile computing environment. In
a typical wireless data broadcast system, a base station
will broadcast information over one or multiple broadcast
channels repeatedly. Clients will listen to the channels,
wait for the requested data and download them when they
arrive. Wireless data broadcast is especially suitable for
public information, such as weather, traffic, and stock quote,
because of its scalability and flexibility [24].

Two major performance concerns for a wireless data
broadcast system are the response time and the energy
efficiency. Response time is the time interval between the
moment a client tunes in a broadcast system with a request
of one or more data items to the moment all requested
data are downloaded. It is obvious that shorter response
time is more desirable. On the other hand, in wireless
communication environments, most clients are mobile de-
vices operating on batteries. The smaller the amount of
energy consumed during retrieving data is, the longer the
battery life of a mobile device will be. Therefore, saving
energy is another important issue for designing wireless
data broadcast system.

Various index techniques have been introduced in wire-
less data broadcast systems to reduce the energy consump-

tion [5], [20], [23], [24]. A mobile device usually works in
two modes: the active mode and the doze mode. The energy
consumed in the active mode is about 805–1400mW and
that in the doze mode is about 60mW [14], [24]. With the
help of index information, clients can learn the arriving
time of their requested data in advance and “sleep” while
waiting for the data to arrive, which can greatly reduce the
energy consumption.

In recent years, fast development of wireless communi-
cation technologies such as OFDM (Orthogonal frequency-
division multiplexing) makes efficiently broadcasting data
through multiple channels possible [25]. How to allocate
the data onto multiple channels to minimize the expected
response time has become a hot research topic and lots of
scheduling algorithms are proposed [11], [19], [21].

When a query requests only one data item, to schedule
the retrieving process is straightforward. However, it is
common that a query requests multiple data items at a
time [9], [15], [18] (e.g., a user may submit a query
of the top 10 stocks). In such cases, different retrieving
schedules may result in different response time. Moreover,
in a multi-channel broadcast system, retrieving data will
probably need switchings among the channels, which not
only consumes additional energy, but also causes possible
conflicts [17], [22], [26]. Compared to the massive amount
of research effort on scheduling data at the server side,
there has been little work done on scheduling the data
retrieval process from the client’s point of view. In this
paper, we focus on developing efficient scheduling algo-
rithms for retrieving multiple data items from multiple
broadcast channels. We are also the first paper presenting a
thorough theoretical analysis of the data retrieval problem
for wireless data broadcast. The main contribution of this
paper includes:

1) We define the Largest Number Data Retrieval (LNDR)
problem with the objective of downloading the largest
number of requested data items in a given time inter-
val. The motivation is that the users may lose patience
if the downloading takes too long, and they may drop
the request if the waiting time exceeds certain deadline.
LNDR takes the “deadline” into consideration and therefore
also describes the time-critical scenarios. When the time
needed for channel switching can be ignored, a polynomial
time optimal algorithm is developed. For general LNDR,

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 891

a Greedy algorithm with provable approximation ratio is
exhibited.

2) The Largest Weighted Data Retrieval (LWDR) prob-
lem, which is a variation of LNDR, is discussed. It is
suitable for broadcast systems in which different data items
have different levels of importance for clients. How to
construct a polynomial time constant factor approximation
for the LWDR problem is presented.

3) When energy consumption is of first priority, we
formulate another optimization problem, namely, Minimum
Cost Data Retrieval (MCDR). We discuss the approxima-
bility and inapproximability of this problem under different
conditions. Specially, when there is no energy consumption
in the doze mode, we derive a polynomial time O(log k)-
factor approximation for MCDR and we prove it has
no polynomial time o(log k)-factor approximation unless
P = NP , where k is the number of requested data items.
When energy consumption in the doze mode is counted, it is
shown that MCDR has no polynomial time approximation
with any nontrivial factor unless P = NP .

The rest of this paper is organized as follows: Sec. III
gives the problem statements of LNDR and MCDR. Sec. IV
studies the LNDR problem. In detail, Sec. IV-A efficiently
solves LNDR, assuming there is no channel switching time;
Sec. IV-B presents an approximation algorithm for the gen-
eral case of LNDR and LWDR is discussed in Sec. IV-C.
Sec. V analyzes the approximability and inapproximability
of MCDR. Sec. VI gives the simulation results of our
proposed algorithms; and Sec. VII concludes this paper.

II. RELATED WORK

Scheduling is a hot topic of wireless data broadcast.
Acharya et al. proposed the scheduling problem from
the server’s point of view [2]. They introduced a data
scheduling technique named Broadcast Disk. Vaidya et al.
studied the single-channel scheduling problem for data of
non-uniform lengths [3]. In [6], Kenyon and Schabanel
proved that the problem of minimizing the expected access
time for non-uniform-length data even with single broadcast
channel is NP−hard.

In addition to single channel, a lot of research works on
data scheduling for multi-channel wireless data broadcast
have been done. In [8], Prabhakara et al. presented a multi-
level multi-channel model for improving the broadcast per-
formance. Ardizzoni et al. study this problem in [19]. They
developed a dynamic programming algorithm to optimally
allocate skewed data over multiple channels. Zheng et
al. proposed a near-optimal solution for scheduling non-
uniform length data on multiple channels [21].

Dependent data broadcast refers to the situations where
a query requests multiple data items which have certain
relations with each other. There are several research works
on data scheduling for dependent data broadcast. Chung et
al. and Lee et al. independently discussed the scheduling
problem for queries with multiple data items to minimize
the average response time [9], [10]. Huang et al. proposed

an algorithm for scheduling dependent data for ordered
queries over multiple channels in [13], and they extended
their work to unordered queries later in [18].

Although there are many works on various data schedul-
ing problems from the server’s point of view, there have
been little work on data retrieval scheduling at the client
side. Hurson et al. studied the data retrieval problem aims
at minimizing the number of channel switchings and the
response time in [17], [22]. In [26], Shi et al. investigated
how to retrieve data from multiple channels by using
multiple parallel processes. However, none of those works
provide any theoretical analysis on either the data retrieval
problem or their proposed algorithms. All of them assumed
the data set are partitioned over multiple channels without
replications, which restricts their application since in many
real situations the same data may appear repeatedly on
channels based on their access frequencies [2], [15], [16].

III. PROBLEM FORMULATION

Suppose a set of data items d1, d2, · · · , dN are broad-
casted repeatedly from a base station which has n channels
c1, c2, · · · , cn. A mobile client wants to download a subset
of data items D = {dD1 , dD2 , · · · , dDk

}, where k denotes
the number of data in D. Without loss the generality,
we assume: 1) The n broadcast channels have the same
bandwidth. 2) The N data items have uniform length. 3)
The index information is allocated on separate broadcast
channels from data, and clients will retrieve the index
information before downloading data. 4) The mobile clients
can only access a single channel at any particular time. Note
that the second assumption does not limit the use of our
model when data items are of different sizes. In that case,
we can treat a large data item as multiple consecutive data
items of the same size.

According to the above assumptions, we can define a
“time slot” as the time needed to broadcast one data item.
For the rest of the paper, “time T ” means the time slot
with sequence number T and a triple Tr = {iTr, jTr, TTr}
denotes the data item diT r

can be downloaded from channel
cjT r

at time TTr.
When designing data retrieval algorithms for multi-

channel broadcast systems, we need to pay attention to the
possible conflicts of retrieving data from parallel channels.
Conflict1: The data items allocated on the same time slot
of different channels cannot be download simultaneously.
Conflict2: Two data items allocated on the ith and (i+1)th

time slots of different channels respectively cannot be both
downloaded during [ti, ti+1]. Conflict1 is obvious. The
reason of Conflict2 is that switching from any channel to a
different channel takes time. If the time is not negligible,
a client cannot download data at time ti+1 from one
channel if it was downloading from another channel at
time ti, because a time slot is already the smallest unit
for retrieving.

Since we have the assumption that the clients will retrieve
the index information before downloading data, the access

892

time in our study is defined as the time elapsed from the
moment a client starts retrieving data to the moment all
requested data are downloaded. The energy consumption is
defined as (tAccess−tActive−h)·λDoze+tActive·λActive+h·
λSwitch, where tActive is the time slots spending on down-
loading data, and h is the number of channel switchings.
λdoze and λactive are power consumptions during one time
slot in the doze and active modes respectively, and λswitch

is the power consumption for one channel switching. Since
the locations of all the requested data are known, the energy
cost in the active mode equals to λactivek, where k is the
number of requested data. Therefore from the discussion
above, one notes that to reduce tAccess is to reduce the
energy consumption in the doze mode; and smaller h means
less energy consumed in channel switching.

Definition 1. Given a requested data set D, a channel
set C, a Valid Data Retrieval Schedule is a set of k
triples Tr1, T r2, · · · , T rk, where each triple corresponds
to a distinct data item in D, and there is no conflicts among
all the triples.

Definition 2. The Energy Cost of a data retrieval schedule
is defined as: λDoze(tAccess−k−h)+λActivek+λSwitchh,
where k is the number of requested data items and h is the
number of channel switchings.

Definition 3. The Minimum Cost Data Retrieval (MCDR)
Problem: Given a data set D, a channel set C and three
power consumption parameters λdoze, λactive and λswitch,
find a valid data retrieval schedule such that the energy
cost is minimized.

In some time critical circumstances, clients may prefer a
data retrieval schedule to download the largest number of
data items in a given time duration regardless of the power
consumption. The LNDR problem is defined accordingly.

Definition 4. The Largest Number Data Retrieval: Given a
data set D, a channel set C, and a time duration [T1, T2],
download the largest number of data items in D during
time [T1, T2].

One important assumption for both defined problems are
that there may be replications of the same data items on
broadcast channels. Compared with [17], [22], [26] where
no data replication is allowed, this is a more generalized
assumption which fits all wireless data broadcast programs.

IV. LARGEST NUMBER DATA RETRIEVAL

In this section, we study the LNDR problem. We show
that a special case of this problem can be solved in
polynomial time. For the general case, we devise a 1

2 -factor
approximation with time complexity O(nt), where n is the
number of channels and t = T2 − T1 + 1 is the number of
time slots in [T1, T2].

A. The LNDR Problem without Conflict2
In Sec. III, two types of conflicts are defined. If the

time needed to switch between channels is very short

Fig. 1. Convert Largest Number Data Retrieval to Maximum Matching

and assumed to be negligible, the LNDR problem with-
out Conflict2 can be solved in polynomial time. Similar
assumption was also applied to design data allocation
methods for generating multi-channel broadcast programs
[9], [13], [18].

Theorem 1. There exists a Maximum Matching algorithm
to solve LNDR without Conflict2 in O((k + t)

1
2 nt) time,

where k is the number of requested data items, n is the
number of broadcast channels and t is the time duration.

Proof: If the time needed for channel switching can
be ignored, LNDR can be converted into the Maximum
Matching problem through a bipartite graph, thus can be
solved in polygonal time. An example is shown in Fig. 1.
Given an instance of the LNDR problem L, we construct a
bipartite graph G(VD, VT , E) as follows: 1) For each data
item di, define a vertex vi in the vertex set VD. 2) For each
time slot Tj , define a vertex uj in the vertex set VT , where
T1 ≤ Tj ≤ T2. 3) If there exists a channel broadcasting
data item di at time Tj , create an undirected edge (vi, uj)
in the edge set E.

With this construction, finding a schedule to download
the largest number of data items in the time duration
[T1, T2] equals to finding a Maximum Matching in the
bipartite graph G(Vd, Vt, E). The Hopcroft-Karp algorithm
[1] finds a Maximum Matching in O(|V | 12 |E|) time, where
V is the vertex set and E is the edge set. We have
|V | ≤ t + k and |E| ≤ nt, hence the LNDR without
Conflict2 can be solved in O((k + t)

1
2 nt) time.

B. The General LNDR Problem

Although channel switching time is usually shorter than
one time slot, it is not negligible [17]. We assume, in this
study, the channel switching takes one time slot, since it
is already the smallest unit for retrieving. We next present
a O(nt) time 1

2 -factor approximation algorithm based on
a greedy strategy for the general LNDR problem. The
pseudo-code is shown in Alg. 1.

Theorem 2. The Greedy-LNDR (Alg. 1) is a 1
2 -

approximation for LNDR. It has time complexity O(nt),
where t is the total number of time slots, and n is the
number of channels.

Proof: As shown in Alg. 1, each time we select a
channel that downloads the largest number of consecutive
data items in the next time period. Assume that Opt

893

Algorithm 1 Greedy-LNDR
1: Input: a time duration [T1, T2] and a set of channels

with requested data items;
2: Output: a data retrieval schedule S;
3: Let P ← ∅ (P holds the data items already down-

loaded.);
4: let t = T1;
5: while t < T2 do
6: if There exist data items not in P and broadcast at

time t then
7: Find a channel that contains the largest (h ≤ T2 +

1− t) number of consecutive data items not in P
and its first data item starts at time t;

8: Put the h data items into P and update S.
9: t← t+h+1(one time slot is used for switching);

10: else
11: t← t + 1;
12: end if
13: end while

Fig. 2. An illustration of Greedy-LNDR (Alg. 1)

is an optimal schedule that can download the largest
number of data items during [T1, T2]. We compare the
schedule GL resulted by Alg. 1 with Opt. Assume the
solution GL downloads m sets of consecutive data items
D1, D2, · · · , Dm. Obviously, D1, D2, · · · , Dm are disjoint
and we can partition the entire period [T1, T2] into m
continuous intervals I1, I2, · · · , Im, each interval Ii starting
with the first data item in Di. As shown in Fig. 2, each
interval Ii can be further divided into two subparts: Ipart1

i

and Ipart2
i . Ipart1

i contains the time slots to download data
items di1 , · · · , dih

, and Ipart2
i contains the idle time slots

(i.e., from the end of the ith downloading to the beginning
of the (i + 1)th downloading). Note that in Ipart2

i , data
items not downloaded yet in D1 ∪ D2 ∪ · · · ∪ Di−1 can
only appear immediately after the time slot of dih

on a
different channel, otherwise it will be the beginning of a
new interval.

For each interval Ii = [Tib
, Tie

], where Tib
and Tie

,
respectively, are the beginning and ending time of in-
terval Ii, we define GL∗(Ii) = GL([T1, Tib

− 1]) ∩
Opt([Tib

, Tie
]), where Opt([Tib

, Tie
]) denotes the set of

data items downloaded during [Tib
, Tie] by schedule Opt

and GL([T1, Tib
− 1]) represents the set of data items

downloaded between [T1, Tib
− 1] by schedule GL. We

claim that |GL∗(Ii) ∪ GL(Ii)| ≥ |Opt(Ii)|. Assume GL
download h data items during Ii, there are only two
possible cases (as demonstrated in Fig. 2):

Case-1: If the optimal schedule Opt downloads a set of h

data items in Ipart1
i and Opt(Ipart1

i)∩GL([T1, Tib
−1]) =

∅, then Opt(Ipart2
i) ⊆ GL([T1, Tib

− 1]). In the example,
assume Alg. 1 downloads {d2, d3, d4}, and Opt downloads
{d5, d6, d7}, then d8 must belong to GL([T1, Tib

− 1]).
Otherwise, Alg. 1 will download {d5, d6, d7, d8} instead
of {d5, d6, d7}. For a similar reason, all the shaded data
items {d9, d10, d11} ⊂ GL([T1, Tib

− 1]).
Case-2: If Opt downloads less than h data items in

Ipart1
i or downloads at least one data in GL([T1, Tib

− 1]),
then only the first positions of Ipart2

i may contain data
items not in GL([T1, Tib

− 1]) and Opt can download at
most one of them. That is, Opt, either downloads h + 1
data items with at least one from GL([T1, Tib

− 1]), or
downloads at most h number of data in Ii.

In both cases, |GL∗(Ii) ∪ GL(Ii)| ≥ |Opt(Ii)|, thus∑m
i=1 |GL∗(Ii) ∪ GL(Ii)| ≥

∑m
i=1 |Opt(Ii)| ≥ |Opt|

and
∑k

i=1 |GL∗(Ii) ∪ GL(Ii)| =
∑m

i=1 |GL∗(Ii)| +∑m
i=1 |GL(Ii)| ≤ 2 · |GL|. We now can conduct that

|GL| ≥ |Opt|
2 .

In Alg. 1, it takes at most n|Di| time for downloading
the data items in Di. We have

∑m
i=1 |Di| ≤ t, therefore

the total time complexity is O(nt).
In [22], Hurson et al. study a similar problem as LNDR.

The difference is that they assume the data items are resid-
ing on channels without replication and the channels have
the same broadcast cycle. A heuristic was proposed in that
paper to schedule the data retrieving in one broadcast cycle.
They generate all possible access patterns from all channels
and selects the best one. The method of exhaustive search
guarantees an optimal solution, but makes the computation
very high and not feasible in practice.

If we restrict the LNDR problem with conditions that 1)
all the channels have the same cycle lengths and 2) the data
in one cycle are non-replicative, this special LNDR problem
equals to the problem studied in [22]. We call a broadcast
program satisfying 1) and 2) Flat Data Scheduling (FDS).
From the proof of Thm. 2, one notes that if the broadcast is
FDS and the time duration is at most one broadcast cycle,
Alg. 1 guarantees an optimal solution. In the proof of Thm.
2, we have

∑k
i=1 |GL∗(Ii) ∪ GL(Ii)| ≥

∑k
i=1 |Opt(Ii)|,

and a FDS program has no replicative data in one cycle.
Therefore, GL([T1, Tib

− 1]) ∩ Opt([Tib
, Tie]) = ∅ and∑k

i=1 |GL(Ii)| =
∑k

i=1 |Opt(Ii)|.
One important issue, however, is that there is no poly-

nomial time optimal solution for general LNDR unless
P = NP . To show the decision version of general LNDR
problem is NP−hard, we reduce in polynomial time the
3SAT problem to it. The 3SAT problem is that given a
3CNF (Conjunctive Normal Form) formula F , determine
whether F has a satisfiable assignment.

Theorem 3. The general LNDR problem is NP−hard.

Proof: Let F be a 3CNF formula with m variables
x1, x2, · · · , xm and l clauses f1, f2, .., fl. We construct the
instance of LNDR as follows:

1) Build two channels, channelX and channelX̄ . Both

894

Fig. 3. 3SAT <p
m LNDR

of them have broadcast cycle length 2ml + m and are par-
titioned into m equal disjoint intervals I1, I2, · · · , Im, such
that each interval contains 2l time slots. Two intervals Ii

and Ii+1 are separated by one time slot, where 0 ≤ i < m.
2) For each clause fj , when fj contains xi, define a

data item dj and allocate it on the (2j)th position of the
ith interval of channelX ; it is allocated on the (2j − 1)th

position of the ith interval of channelX̄ when fj contains
x̄i.

3) Define a set of data items Dbi
= {bi1 , bi2 , · · · , bil

}
for each variable xi. Allocate all the elements in Dbi

on
the even positions of the ith interval of channelX in this
order; and allocate them on the odd positions of the ith

interval of channelX̄ in the reverse of this order.
4) Let Dd =

⋃l
j=1{dj} and Db =

⋃m
j′=1 Dbj′ . The

requested data set D = Db ∪Dd.
We use a 3CNF F = (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)

to demonstrate the reduction. The data items are arranged
on channelX and channelX̄ as the way shown in Fig. 3.

We have to show F is satisfiable if and only if there
is a valid data retrieval schedule S between time duration
[1, 2ml + m] to retrieve all the data items in D.

1) If F is a “yes” instance, we can switch among the
two channels according to the instance so that all the data
items can be received in one cycle, which is 2lm+m time
slots.

2) If all the data items in D can be downloaded in 2ml+
m time slots. That is, all the data items in Db and Dd in can
be downloaded in m intervals. There are m disjoint sets in
Db, the data items in Dbi are allocated on the ith interval of
two channels alternatively and reversely. Obviously, we can
download at most l data items in Db within one interval.
In addition, if there is any switching between channelX
and channelX̄ in the ith interval, we lose the opportunity
to download all the data in Dbi

, i.e., if S downloads all
data items in Dd and Db in 2ml +m time slots, it chooses
either channelX or channelX̄ to download data in the ith

interval for any given i. Therefore, each variable can be
assigned with either true or false to satisfy F .

In sum, we prove the general LNDR problem is
NP−hard.

C. A variant of the LNDR problem

Sometimes the importance of data items even in one
request are not the same. If there is a deadline, then the
client would prefer to download the important items first.
To handle this kind of situation, we define a variant of
LNDR by adding weights to data items.

Definition 5. The Largest Weighted Data Retrieval
(LWDR) problem: A set of k data items are broadcasted

via n channels. Each data item di has a weight wi,
(1 ≤ i ≤ k). Given a time duration [T1, T2], LWDR is
to download a set of data items D′, such that

∑
di∈D′ wi

is maximized.

In the proof of Thm. 1, we convert the LNDR problem
into a bipartite graph. The lower set of vertices represents
the time slots, and the upper set of vertices represents
the requested data. An edge (u, v) is added if at time
slot u, the data item v is downloadable. For the LWDR
problem, we just add a weight to each edge (u, v), which
is identical to the weight of data item v. It is well known
that the weighted maximal matching in bipartite graph can
be solved by Hungarian algorithm in polynomial time.
Therefore, the LWDR problem without conflict2 can be
solved efficiently in polynomial time. We next show that
the general LWDR problem with conflict2 has polynomial
time 1

2 -factor approximation. Alg. 2 provides the pseudo-
code.

Algorithm 2 Weighted Maximum Matching
1: Input: a time duration [T1, T2] and a set of channels

with weighted data items;
2: Output: a data retrieval schedule S;
3: Construct a weighted bipartite graph G(Vd, Vt, E);
4: Find a Maximum Matching M in G by Hungarian

algorithm;
5: Partition M into two subparts M1 and M2 (M1 con-

tains data with odd time slots and M2 contains data
with even time slots); Let M∗

1 denote the set of data
in M1 which has no conflict with M2 and M∗

2 denote
the set of data in M2 which has no conflict with M1;

6: if
∑

di∈M1
wi ≥

∑
dj∈M2

wj then
7: S ←M1 ∪M∗

2 ;
8: else
9: S ←M2 ∪M∗

1 ;
10: end if

Theorem 4. Alg. 2 is a polynomial time 1
2 -approximation

for the general LWDR problem.

Proof: Assume M is the maximal weighted matching.
Partition M into M1 and M2 such that M1 contains all the
edges (u, v) with odd time slots and M2 contains all the
edges (u, v) with even time slots. Clearly, one of M1 and
M2 has the sum of weights to be at least half of the sum
of weights of M . Assume that

∑
di∈M1

wi ≥
∑

dj∈M2
wj ,

then M1 ≥ 1
2M is a 1

2 -approximation.

V. MINIMUM COST DATA RETRIEVAL

Consider now the MCDR problem, we first show two
negative results, then present a parameterized heuristic.

A. Inapproximability of MCDR

As discussed in Sec. III, the energy consumption for
downloading k data items equals to λDoze(tAccess −

895

tActive − h) + λActivetActive + λSwitchh, where h is the
number of channel switchings. Since the index information
is assumed to be obtained before data retrieving, we have
tActive = k, and the energy consumption in the active mode
is λActivek. In the setting of [14], the energy consumed in
the active mode is about 13–24 times of that in the doze
mode. When requested data size is fixed, with the increasing
of bandwidth, the ratio λActive/λDoze becomes larger and
tAccess becomes shorter. If the bandwidth is efficiently
large, we may assume the energy consumption in the doze
mode is negligible and minimizing the energy consumption
is equivalent to minimizing the number of switchings. We
next show that the problem of minimizing the number of
switchings, with arbitrary number of channels, isNP−hard
to be approximated within to o(log k).

Theorem 5. There is no o(log k)-factor polynomial time
approximate algorithm to minimize the number of switch-
ings unless P = NP , where k is the number of requested
data items.

Proof: We prove the theorem by a reduction from
Set Cover. The inputs of a Set Cover are m + 1 sets:
S1, S2, · · · , Sm and S, where S1, S2, · · · , Sm are subsets
of S. The target is to find the least number of subsets
Si1 , Si2 , · · · , Sil

such that Si1 ∪ Si2 ∪ · · · ∪ Sil
= S. So, if

we assume each element in S is a requested data item, we
can set up m channels to broadcast the m subsets. The Set
Cover problem directly equals to the minimum switching
problem. It is well known that the Set Cover problem has an
O(log n)-factor polynomial time approximation and it has
no o(log n)-factor polynomial time approximation unless
P = NP [4]. Therefore, an o(log n)-factor polynomial
time approximate algorithm for MCDR with λDoze = 0
implies P = NP .

Consider now the general MCDR problem for an ar-
bitrary number of channels. In contrast to the minimum
switching problem, introducing the energy consumption in
the doze mode makes the problem hard to approximate
within to any nontrivial factor.

Theorem 6. For any constant µ > 1, there is no polynomial
time optµ-approximation for MCDR unless P = NP ,
where opt is the minimum energy consumption.

Proof: We prove the theorem by exhibiting a polyno-
mial time reduction from 3 Dominating Matching. For 3
disjoint sets X , Y and Z, let J be a subset of X ×Y ×Z.
M ⊆ J is a 3 Dimensional Matching if for any two distinct
triples (x1, y1, z1) ∈ M and (x2, y2, z2) ∈ M , we have
x1 6= x2, y1 6= y2 and z1 6= z2. Given a set J and an integer
m, decide whether there exists a 3 Dimensional Matching
with |M | ≥ m is NP−hard and the NP−hardness holds
even in the special case that m = |X| = |Y | = |Z|, namely,
3 Dominating Matching.

Given an instance of 3 Dominating Matching M with
inputs X , Y , Z and J , the corresponding instance of
MCDR is built by setting |J | broadcast channels with a

requested data set D = X∪Y ∪Z. Each channel broadcast a
triple of data in J repeatedly during [1, 4m−1] time, where
m = |X| = |Y | = |Z|. After that the |J | channels only
broadcast unrelated data 6∈ (X ∪ Y ∪ Z) during the next q

time slots, where q = d (λActive3m+λSwitch(m−1))µ+1

λDoze
e. Thus

all the channels have cycle length q + 4m− 1.
IfM is a “yes” instance, i.e., there are m disjoint triples

in J . Consider the solution of MCDR which downloads the
m triples sequentially. That is, all the data are downloaded
in 4m−1 time slots with m−1 number of channel switch-
ings. Indeed, this is an optimal solution. We can download
at most 3 data items from one channel, thus to download
3m data, we need at least m − 1 switchings. We claim
that, for any valid schedule, tAccess ≥ 4m − 1. Suppose,
for the sake of contradiction, that tAccess < 4m − 1, we
have h ≤ tAccess − tActive < m − 1, since tActive = 3m
and tAccess < 4m − 1. This contradicts the fact that
h ≥ m − 1. Therefore, the minimum energy consumption
is λActive3m + λSwitch(m− 1).

Conversely, considerM is a “no” instance, the requested
data cannot be downloaded in 4m − 1 time slots, thus
cannot be downloaded in 4m − 1 + q time slots. The
energy consumed in the doze mode is at least (λActive3m+
λSwitch(m− 1))µ+1.

Assume there exists a polynomial time optµ-factor ap-
proximation for MCDR and M is a “yes” instance, the
energy consumption is at most (λActive3m+λSwitch(m−
1))µ+1. Therefore, a polynomial time optµ-approximation
for MCDR implies P = NP .

B. A Parameterized Heuristic

The simple greedy O(log n)-factor approximation for the
Set Cover problem brings an O(log n)-factor approximate
algorithm for the minimum switching problem. We next
present a parameterized heuristic for MCDR. Let P holds
the data items already downloaded, D[T1, T2] denotes
the set of data in [T1, T2], and D∗[T1, T2] denotes a set
of downloadable data in [T1, T2], which is a subset of
Dci

[T1, T2]\P . The energy consumption of downloading
D∗[T1, T2] distributed to each requested data is
λSwitchns+λDoze(T2−T1−|D∗

ci
[T1,T2]|−ns)+λActive|D∗

ci
[T1,T2]|

|D∗
ci

[T1,T2]| ,
where ns denotes the number of switchings. Each time the
algorithm searches for the minimum cost downloadable
set D∗

ci
[T1, T2], and terminates when all the requested data

are downloaded. Alg. 3 demonstrates the pseudo-code.
The parameter W reflects the preference between the

computational complexity and the algorithm performance.
It is intuitive that better solution can be obtained by
increasing W .

VI. SIMULATION

We perform three experiments to evaluate our proposed
algorithms. In addition to the proposed algorithms, we also
implement two heuristics Next Object (NO) and Row Scan
(RS) [17] for comparison purposes. Next Object is a natural
data retrieval strategy which always downloads the next

896

Algorithm 3 MCDR Heuristic
1: Input: a requested data set D, a channel set C, and a

parameter W .
2: Let P ← ∅;
3: Let t← 1; (t is the current time slot.)
4: while P 6= D do
5: Use the brute-force method to find a downloadable

data set D∗[t, t + w] with lowest cost, where 0 <
w ≤W ;

6: P ← P ∪D∗[t, t + w];
7: t← t + w + 1;
8: end while

available data in a channel and Row Scan retrieves all
the requested data from one channel in each pass. The
performance metrics used in the experiments are ADN
(Average Download Number) and AEC (Average Energy
Consumption), where ADN is defined as the the average
number of data items downloaded in the given duration,
and AEC is defined as the average energy consumption
for downloading a set of requested data. We first simu-
late a special data broadcast environment, in which the
channel switching time is assumed to be negligible. The
performances of Greedy-LNDR (GL, Alg. 1) and Maximum
Matching (MM, Alg. 2) are compared with NO. In the
second experiment, we compares the three algorithms in a
general broadcast environment, i.e., the channel switching
time is not negligible. The last experiment evaluates the
performance of MCDR Heuristic (MH, Alg. 3), NO and
RS in terms of Average Energy Consumption (AEC) in a
general broadcast environment. The broadcast environments
will be introduced in detail in Sec. VI-A.

A. Simulation Environment

To evaluate our algorithms, we construct two types
of broadcast programs: Special Data Broadcast without
channel switching time (SDB) and General Data Broadcast
with channel switching time (GDB). In both types of
programs, we assume index information is allocated on
separate broadcast channels from data, and clients will
retrieve the index information before downloading data.
We simulate a base station with n broadcast channels, the
bandwidth of each channel is 1Mbit/sec [17], [22]. The
database to be broadcast has N data items, each of size 512
bytes. The time duration is denoted by t. The data items
of query data set D is generated with access probabilities
following the Zipf distribution [7], which is a typical model
for web data of non-uniform access patterns [20]. Given
the number of data items N and the skew parameter θ, the
Zipf distribution is: pi = (1

i)θ∑N

i=1
(1

i)θ
, where pi is the access

probability of data di and 0 ≤ θ ≤ 1.
For both SDB and GDB, we adopt two data scheduling

methods for data allocation at the server side: Flat Data
Scheduling (FDS) and Skew Data Scheduling (SDS) [19].

Fig. 4. Experimental Results for Special LNDR without Channel
Switching Time when N = 1000, k = 100, t = 100 and θ = 0.8

With FDS, data items are equally distributed over n chan-
nels, each of cycle length N/n. With SDS, the data items
are allocated over n broadcast channels according to their
access probabilities, with the objective of minimizing the
expected response time. In [19], a dynamic programming
algorithm is presented, which provides optimal SDS. The
parameters of both programs vary in the range: N = 1000,
20 ≤ k ≤ 200, 50 ≤ t ≤ 200 and 2 ≤ n ≤ 32 respectively.
For each experiment, we simulate 10000 requests to get
ADN and AEC.

B. Simulation Results

The simulation results of the first experiment are shown
in Fig. 4. Since the RS heuristic is proposed for reducing
the number of channel switchings [17] and is not suitable
for LNDR, its results are omitted henceforth for the first
two experiments. According to the results in Fig. 4, when
applying FDS for data allocation at the server side and the
channel switching time is assumed to be negligible, NO,
MM and GL download the same number of data items
(i.e., all the three solution are optimal), which validates
our conclusion in Sec. IV-A and IV-B. When FDS is
replaced by SDS at the server side, the number of data
items downloaded by NO (respectively GL) increases more
than 15 percent, which implies that SDS outperforms FDS
for data allocation at the server side. Moreover, when MM
scheduling is used to replace GL or NO at the client side,
the ADN increases again 10 percent approximately. From,
Fig. 4, we can conduct that significant better performance
can be obtained by using a proper combination of server
side scheduling and client side scheduling. MM, which
guarantees an optimal solution, does perform better than
NO and GL in the SDB environment.

Although MM downloads maximum number of data
items in the SDB environment, it is not optimal in the

897

Fig. 5. Experimental Results for General LNDR with Channel Switching
Time when N = 1000, k = 100, t = 100 and θ = 0.8

GDB environment. After obtaining a maximum matching, it
has to deal with the possible conflicts because the channel
switching takes time. Fig. 5 and Tab. I demonstrate the
simulation results of the second experiment. Consider the
results shown in Fig. 5, when n < 15, the ADN of all
schemes increase greatly as n increases. When n > 15,
the increments of MM slow down. Similar as the results
of the first experiment, SDS performs better than FDS
when applying the same data retrieval scheduling at the
client side. But unlike in the SDB environment, both GL
and NO outperform MM with respect to the ADN in the
GDB environment. When downloading small number of
data from few broadcast channels, as shown in Tab. I, the
number of data items downloaded by MM is slightly less
than that downloaded by GL or NO. When k ≥ 100 and
n > 4, the performance of MM becomes poor. Specifically,
when k = 200 and T = 100, the ADN of MM decreases
as n increases. This agrees with our intuition in that
increase the number of channels causes more conflicts in
the maximum matching. GL always works better than NO
and MM in terms of ADN in the GDB environment.

The results of the third experiment are exhibited in Tab
II and Fig. 6. It is worthy to mentioned that the power
parameters λActive and λDoze highly depend on the channel
bandwidth and the data size. In the experiment, λActive,
λDoze and λSwitch are set to 130mW, 6mW and 13mW
respectively, as used in [22]. We show the performance of
MH with the parameter W = 10. From Fig. 6, one notes
that using SDS and more broadcast channels can reduce the
AEC for clients. From the client’s point of view, when using
NO scheduling, the energy consumption AECDoze+Switch

is 5.5 and 6.4 percent higher than that resulted by MH
(when n = 32 and FDS, SDS are used at the server side
respectively). RS performs significantly worse than MH and
NO when k = 100 and N = 1000. In addition, several

k/t Schema ADNn=4 ADNn=8 ADNn=32

20/50 FDS/MM 3.69 6.75 12.63
FDS/NO 3.69 6.75 13.97
FDS/GL 3.70 6.77 14.05
SDS/MM 9.44 10.93 13.04
SDS/NO 9.50 11.16 15.86
SDS/GL 9.55 11.47 17.22

100/100 FDS/MM 27.47 38.25 44.59
FDS/GL 27.78 38.86 49.33
FDS/NO 28.09 39.76 50.85
SDS/MM 42.02 44.92 51.07
SDS/GL 43.94 49.57 54.89
SDS/NO 44.55 50.48 58.82

200/100 FDS/MM 40.94 48.39 50.63
FDS/NO 42.33 51.11 54.42
FDS/GL 43.95 54.52 62.11
SDS/MM 56.49 54.64 51.23
SDS/NO 60.18 62.33 64.33
SDS/GL 64.47 69.03 70.37

200/200 FDS/MM 81.70 86.31 93.33
FDS/NO 84.69 96.02 106.33
FDS/GL 87.55 100.16 113.80
SDS/MM 94.21 99.99 101.95
SDS/NO 102.90 114.60 110.35
SDS/GL 106.48 117.26 126.69

TABLE I
EXPERIMENTAL RESULTS FOR GENERAL LNDR WHEN N = 1000

AND θ = 0.8

Fig. 6. Experimental Results for MCDR when N = 1000, k = 100 and
θ = 0.8

conclusions can be made from the results of Tab. II. First
RS is not suitable for download small number of data, but
it consumes the minimum energy with respect to NO and
MH when k = 500 and N = 1000. Second, NO is poor
at downloading large number of data in terms of energy
consumption. Third, MH outperforms NO and RS when
k ∈ {50, 100} and its performance consistently matches
that of RS when k = 500.

Finally, we would also like to evaluate the running time
of the proposed algorithms so that we can validate the
scalability. We simulate a GDB environment with relatively
large parameters: N = 10000, k = 500, θ = 0.8,
n = 16 and W = 10. The average running time of

898

k Schema AEC AECDoze+Switch ADNSwitch

50 FDS/NO 9326.58 2826.58 533.94
FDS/MH 9067.84 2567.84 436.08
FDS/RS 11741.66 5241.66 90.89
SDS/NO 8920.34 2420.34 441.61
SDS/MH 8528.13 2028.13 330.45
SDS/RS 11428.35 4928.35 90.59

100 FDS/NO 17329.25 4329.25 1032.69
FDS/MH 17218.65 4218.65 790.02
FDS/RS 18699.11 5699.11 91.00
SDS/NO 16661.50 3661.50 863.27
SDS/MH 16263.20 3263.20 649.59
SDS/RS 18585.84 5585.84 91.00

500 FDS/NO 73628.35 8628.35 3264.01
FDS/MH 71412.80 6412.80 1098.98
FDS/RS 71080.01 6080.01 91.00
SDS/NO 73299.26 8299.26 2540.74
SDS/MH 71112.65 6112.65 995.44
SDS/RS 71082.79 6082.79 91.00

TABLE II
EXPERIMENTAL RESULTS FOR MCDR WHEN N = 1000, n = 8 AND

θ = 0.8

MH is only 231 milliseconds. Therefore, it scales well
when W is small. When T = 1000, the running time
of GL is less than 25 milliseconds, while that of MM is
about 130 milliseconds. GL is very fast because of its low
computational complexity.

In conclusion, for the LNDR problem, MM downloads
the maximum number of data items in the SDB environ-
ment, and GL always achieves a better solution with respect
to MM and NO in the GDB environment. Therefore, the
choice between them depends on the broadcast environ-
ments. When energy consumption is of first priority, MH
always outperforms NO and RS when k is small. RS is an
efficient method for retrieving a large percentage of data.

VII. CONCLUSION

In this paper, the data retrieval scheduling over multiple
channels is considered. Two optimization problems, MCDR
and LNDR, are defined and a series of theoretical results,
such as NP−hardness, approximability and inapproxima-
bility, are proven. The simulation results show that the
proposed approximation algorithms efficiently schedule the
data retrieval process of downloading multiple data from
multiple channels.

We also demonstrate the advantage of data allocation
scheduling at the server side by simulations with various
parameters. According to the experimental results, one
observes that significantly better performances can be ob-
tained by using a combination of skewed data scheduling
at the server side and proper data retrieval scheduling at the
client side. Our future work includes extending our work to
the parallel data retrieval scheduling problem. In addition,
we explore the data retrieval scheduling algorithms by
assuming the index information are already obtained by
clients in this study. As a direction for further research, one
can study the LNDR and MCDR without that assumption.

ACKNOWLEDGMENT

This research work is supported in part by National
Science Foundation of USA under grants CNS 1016320

and CCF 0829993.

REFERENCES

[1] J.E. Hopcroft, R.M. Karp: An n5/2 Algorithm for Maximum Match-
ings in Bipartite Graphs. SICOMP, 2(4):225-231, 1973.

[2] S. Acharya, R. Alonso, M. Franklin, S. Zdonik: Broadcast Disks:
Data Management for Asymmetric Communication Environments.
SIGMOD 1995, pp.199–210, 1995.

[3] N. Vaidya, S. Hameed: Log Time Algorithms for Scheduling Single
and Multiple Channel Data Broadcast. MOBICOM 1997, pp. 90–99,
1997.

[4] U. Feige: A Threshold of ln n for Approximating Set Cover. JACM,
45:314–318, 1998.

[5] T. Imielinski, S. Viswanathan, B.R. Badrinath: Data on Air: Organi-
zation and Access. TKDE, 9:353–372, 1996.

[6] C. Kenyon, N. Schabanel: The Data Broadcast Problem with Non-
Uniform Transmission Time. SODA 1999, pp. 547–556, 1999.

[7] C.D. Manning, H. Schutze. Foundations of Statistical Natural Lan-
guage Processing, MIT Press, 1999.

[8] K. Prabhakara, K.A. Hua, J. Oh: Multi-Level Multi-Channel Air
Cache Designs for Broadcasting in a Mobile Environment. ICDE
2000, pp. 167–176, 2000.

[9] Y.D. Chung, M.H. Kim: Effective Data Placement for Wireless
Broadcast. Distrib. Parallel Dat., 9(2):133–150, 2001.

[10] G. Lee, M.S. Yeh, S.C. Lo, A. Chen: A Strategy for Efficient Access
of Multiple Data Items in Mobile Environments. MDM 2002, pp.71–
78, 2002.

[11] W.G. Yee , S.B. Navathe,E. Omiecinski, C. Jermaine: Efficient Data
Allocation over Multiple Channels at Broadcast Servers. IEEE T.
Comput., 51(10):1231–1236, 2002.

[12] W.G. Yee, S.B. Navathe: Efficient Data Access to Multi-Channel
Broadcast Programs. CIKM, pp. 153–160, 2003.

[13] J.L. Huang, M.S. Chen, W.C. Peng: Broadcasting Dependent Data
for Ordered Queries without Replication in A Multi-Channel Mobile
Environment. ICDE 2003, pp. 692–694, 2003.

[14] M. V. Lawrence, L. S. Brakmo, W. R. Hamburgen: Energy manage-
ment on handheld devices, ACM Queue, 1:44–52, 2003.

[15] J.L. Huang, M.S. Chen: Broadcast Program Generation for Un-
ordered Queries with Data Replication. SAC 2003, pp. 866–870, 2003.

[16] K. Foltz, L. Xu, J. Bruck: Scheduling for Efficient Data Broadcast
over Two Channels. ISIT 2004, pp. 113–116, 2004.

[17] J. Juran, A.R. Hurson, N. Vijaykrishnan, S. Kim: Data Organization
and Retrieval on Parallel Air Channels: Performance and Energy
Issues. Wireless Networks, 10(2): 183–195, 2004.

[18] J.L. Huang, M.S. Chen: Dependent Data Broadcasting for Un-
ordered Queries in a Multiple Channel Mobile Environment. TKDE,
16(9):1143–1156, 2004.

[19] E. Ardizzoni, A.A. Bertossi, S. Ramaprasad, R. Rizzi, M.V.S.
Shashanka: Optimal Skewed Data Allocation on Multiple Channels
with Flat Broadcast per Channel. IEEE T. Comput., 54(5):558–572,
2005.

[20] S. Jung, B. Lee, S. Pramanik: A Tree-Structured Index Allocation
Method with Replication over Multiple Broadcast Channels in Wire-
less Environment. TKDE, 17(3):311–325, 2005.

[21] B. Zheng, X. Wu, X. Jin, D.L. Lee. Tosa: A Near-Optimal Schedul-
ing Algorithm for Multi-Channel Data Broadcast. MDM, pp. 29–37,
2005.

[22] A.R. Hurson, A.M. Munoz-Avila, N. Orchowski, B. Shirazi, Y. Jiao:
Power Aware Data Retrieval Protocols for Indexed Broadcast Parallel
Channels. Pervasive and Mobile Computing, 2(1):85–107, 2006.

[23] Y. Yao, X. Tang, E.P. Lim, A. Sun. An Energy-Efficient and Access
Latency Optimized Indexing Scheme for Wireless Data Broadcast.
TKDE, 18(8):1111–1124, 2006.

[24] J. Xu, W.C. Lee, X. Tang, Q. Gao, S. Li: An Error-Resilient and
Tunable Distributed Indexing Scheme for Wireless Data Broadcast.
TKDE, 18(3):392–404, 2006.

[25] T. Jiang, W. Xiang, H.H. Chen, Q. Ni: Multicast Broadcast Services
Support in OFDMA-Based WiMAX Systems IEEE Commun. Mag.,
45(8): 78–86, 2007

[26] Y. Shi, X. Gao, J. Zhong, W. Wu: Efficient Parallel Data Retrieval
Protocols with MIMO Antennae for Data Broadcast in 4G Wireless
Communications. DEXA 2010, pp.80–95, 2010.

899

