
A Better Approximation Algorithm
for Computing Connected Dominating Sets

in Unit Ball Graphs
Donghyun Kim, Student Member, IEEE, Zhao Zhang, Xianyue Li, Wei Wang,

Weili Wu, Member, IEEE, and Ding-Zhu Du, Member, IEEE

Abstract—A Virtual Backbone (VB) of a wireless network is a subset of nodes such that only VB nodes are responsible for routing-

related tasks. Since a smaller VB causes less overhead, size is the primary quality factor of VB. Frequently, Unit Disk Graphs (UDGs)

are used to model 2D homogeneous wireless networks, and the problem of finding minimum VBs in the networks is abstracted as

Minimum Connected Dominating Set (MCDS) problem in UDGs. In some applications, the altitude of nodes can be hugely different and

UDG cannot abstract the networks accurately. Then, Unit Ball Graph (UBG) can replace UDG. In this paper, we study how to construct

quality CDSs in UBGs in distributed environments. We first give an improved upper bound of the number of independent nodes in a

UBG, and use this result to analyze the Performance Ratio (PR) of our new centralized algorithm C-CDS-UBG, which computes CDSs

in UBGs. Next, we propose a distributed algorithm D-CDS-UBG originated from C-CDS-UBG and analyze its message and time

complexities. Our theoretical analysis shows that the PR of D-CDS-UBG is 14.937, which is better than current best, 22. Our

simulations also show that D-CDS-UBG outperforms the competitor, on average.

Index Terms—Wireless networks, connected dominating sets, virtual backbones, unit ball graphs.

Ç

1 INTRODUCTION

WIRELESS networks including sensor networks and ad
hoc networks consist of lots of wireless nodes, which

are equipped with a processing unit, a communication
module called a transceiver, a limited energy source such
as a battery, etc., [1]. Because of the rapid improvements of
VLSI, embedded sensor, and wireless radio communica-
tion technologies, the cost of wireless nodes is going down
and their performance is getting better. Once wireless
nodes are deployed on an application area, they organize
an instant network autonomously without any predefined
infrastructure. For these reasons, many people believe that
wireless networks will play a key role in the next
generation of networks. Currently, wireless networks are
studied for various applications such as disaster rescue,
environmental monitoring, battlefield surveillance, concert,
health applications, and so on.

Radio signals, which are commonly used for wireless
communications, consume energy that increases super-
linearly proportional to their travel distance. In addition,

each wireless node carries a limited power source. This
makes energy efficiency a very important issue and multi-
hop communication model is preferred in wireless net-
works. Since there is no predefined physical backbone
infrastructure to support routing and topology control in
wireless networks, routing-related tasks are very compli-
cated and consume lots of energy. Furthermore, this
situation is getting worse as the size of the network grows.
To resolve the scalability problem in wireless networks and
allow them to exploit the benefits of backbone infrastruc-
ture in wired networks, a backbone-like structure is
introduced [2]. Nowadays, this is usually called a Virtual
Backbone (VB).

Simply speaking, a VB of a wireless network is a subset of
nodes in the network. Only nodes in VB are responsible for
maintaining routing information and involved in routing
tasks like machines in fixed physical backbones. Naturally, a
smaller size VB is expected to suffer less from interference,
generate less control messages, and to be more efficient.
Therefore, size is a major quality factor for VBs in many
previous works. So far, several methodologies are introduced
to compute a quality VB in a wireless network. Among them,
the Connected Dominating Set (CDS) problem is frequently
used to model the problem of computing a minimum size VB
in a wireless network, which was first attempted by Guha
and Khuller [3] and later used in many works [4], [5], [6], [7],
[8], [9], [10]. Since computing a Minimum CDS (MCDS) is a
well-known NP-hard problem, all of the works attempted to
generate approximated solutions.

In most cases, people studied the MCDS problem in
homogeneous wireless networks. They also assumed that
all nodes in the networks are on a two-dimensional space
and used Unit Disk Graph (UDG) [12] to abstract the
networks. However, sometimes, this assumption is very far
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from reality. One good example is Underwater Sensor
Networks (USNs) for ocean sampling networks, undersea
explorations, distributed tactical surveillance, disaster pre-
vention, assisted navigation, ocean environmental monitor-
ing, etc., [13]. In many applications of USNs, underwater
sensor nodes are floating around water instead of staying
on the bottom of the ocean. In this case, the height of nodes
becomes considerably important.

To abstract homogeneous wireless networks in three-
dimensional space, Unit Ball Graphs (UBGs) model is
frequently used [7], [14]. Since UDGs are special instances
of UBGs in which the altitude of every node is the same,
every NP-Hard problem in UDGs is also NP-Hard in UBGs.
Naturally, MCDS in a UBG is still NP-Hard. To the best of
our knowledge, there are three papers studying the
problem of designing approximation algorithms to compute
an MCDS of a UBG. Zou et al. proposed a centralized
heuristic algorithm and proved that its Performance Ratio
(PR) is 13þ ln 10 � 15:302 [15]. Butenko and Ursulenko
introduced a distributed algorithm and showed that its PR
is 22 [7]. Zhong et al. presented a distributed algorithm and
claimed its approximation ratio to be 16 [14]. However, we
found that Zhong et al.’s algorithm is flawed and
corresponding PR analysis is incorrect. The details are
discussed in the Appendix.

In this paper, we study the problem of constructing
minimum CDSs in UBGs in distributed environments. The
contributions of this paper can be summarized as follows:

1. We first figure out how many independent nodes can
be contained in the union of two adjacent unit balls.
We notice that this question is closely related to the
famous Gregory-Newton Problem concerning with
kissing number. We first transform our problem in
two adjacent unit balls into another geometric
problem in a graph embedded on the surface. Later,
we use the Euler’s Formula and plenty amount of
calculus in the transformed problem and show that
there can be at most 22 independent nodes inside the
two adjacent unit balls. By combining our new result
with some existing one, we improve the upper
bound for the size of a Maximal Independent
Set (MIS) in a UBG from 11 OPTCDS þ 1 in [7] to
10:917 OPTCDS þ 1:083, where OPTCDS is the size of
an optimal CDS of the UBG.

2. Instead of introducing our distributed algorithm
directly, we first present a centralized algorithm C-
CDS-UBG for which it is both simpler to understand
its behavior and easier to show its PR than for the
distributed algorithm. C-CDS-UBG computes an MIS
first and connects nodes in the MIS using a simple
greedy strategy to generate CDSs in UBGs. We use
our improved upper bound on the size of an MIS in a
UBG and prove that the PR of C-CDS-UBG is 14.937.

3. We introduce a distributed algorithm D-CDS-UBG,
which is originated from C-CDS-UBG (i.e., same
greedy strategy), and thus, whose PR is also 14.937.
As a result, D-CDS-UBG is a distributed algorithm
for the MCDS problem in UBGs, whose PR is better
than the only and the best distributed algorithm for
this problem in [7]. We also analyze its time and
message complexities.

4. In simulations, we show that D-CDS-UBG outper-
forms the competitor’s algorithm in [7], on average,
which coincides with our theoretical analysis.

The rest of the paper is organized as follows: Section 2
discusses some related work. In Section 3, we derive an
upper bound on the number of vertices in a maximal
independent set in terms of the number of vertices in an
optimal CDS. In Section 4, we first present C-CDS-UBG and
prove its PR. Later, we introduce D-CDS-UBG and analyze
its time and message complexities. In Section 5, we describe
our simulation results and analyze them. At last, we make a
conclusion and present some future work in Section 6.

2 RELATED WORK

Around the end of 80s, the idea of VB for wireless networks
was proposed by Ephremides et al. [2]. Guha and Khuller [3]
introduced two polynomial-time two-stage greedy algo-
rithms to compute an MCDS in a general graph G. The
approximation ratio of the first one is 2ð1þHð4ÞÞ, where4
is the maximum degree of G and H is a harmonic function.
In this algorithm, initially all nodes are colored white. Then,
the algorithm selects a node with the maximum degree as a
root and colors it black and its neighbors gray. Until there is
no white node, the algorithm picks a set of white nodes S
such that 1) each node in it is adjacent to a gray, 2) the
number of adjacent white neighbors is the maximum, and
3) 1 � jSj � 2, and colors the white nodes black and one of
its gray neighbor black. After the algorithm is finished, the
set of black nodes is a CDS. The second algorithm is a two-
phase algorithm. In the first phase, it computes a dominat-
ing set. Later, it connects nodes in the set using a Steiner tree
algorithm. In this way, it achieves the PR of Hð4Þ þ 2. Later,
Ruan et al. modify this algorithm to a single-stage algorithm
whose PR is ðlnð4Þ þ 2Þ [6].

Wan et al. introduced a two-stage distributed CDS
computation algorithm whose approximation ratio is a
constant 8 [4]. To model a wireless network, it uses a UDG.
In the first stage of this algorithm, it computes an MIS, which
is also a dominating set. In the next stage, the nodes in the
MIS are connected using a Steiner tree algorithm. Cardei
et al. [5] also introduced a two-phase distributed algorithm.
The PR of this algorithm is also 8, but its message complexity
is lower. Recently, Wu et al. improved the lower bound of
MISs in UDGs from 4optþ 1 to 3:8optþ 1 using a geometrical
analysis, where opt is an optimal CDS in a UDG [8]. Using
this result, the PR of both [4] and [5] is improved from 8 to 7.8.
In [10], Funke et al. improved the lower bound to 3:45optþ 1
and used this result to provide a 6.91-approximation
algorithm to compute CDSs in UDGs. Very recently, Li
et al. further improved the bound to 3:4306optþ 4:8185 and
provided a 6.075-approximation algorithm to compute CDSs
in UDGs [11].

In most cases, people assume that wireless nodes are on a
two-dimensional plane, and to model a homogeneous
wireless network, they use a UDG. However, in reality, the
altitude of nodes can be very different from each other (i.e.,
USNs [13]). Recently, people are using UBGs to model
homogeneous wireless networks in three-dimensional space.
In a UBG, vertices are representing nodes in a wireless
network and there is an edge between two vertices if their
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distance is smaller than the maximum transmission range of
the nodes. Hansen and Schmutz studied the expected size of
a CDS in a random UBG [17]. Very recently, Butenko and
Ursulenko introduced a distributed algorithm to compute an
MCDS in a UBG and proved that the PR of their algorithm is
22 [7]. Zou et al. proposed a centralized algorithm whose PR
is 13þ ln 10 � 15:302 [15].

3 AN IMPROVED UPPER BOUND FOR MAXIMAL

INDEPENDENT SETS

This section introduces a better upper bound for the
number of vertices in an MIS in terms of the number of
vertices in an optimal CDS. In the following sections, we
prove the following things. First, we consider how many
independent nodes can be contained in a unit ball. Second,
we establish an upper bound for the number of indepen-
dent nodes in two adjacent unit balls. At last, based on the
results from the previous two sections, we obtain the main
result of this section.

Here are some notations and definitions, which are
frequently used in the rest of this section. For two points P
and Q in a three-dimensional space, dðP;QÞ denotes the
euclidean distance between them. For a geometric object B,
denote the outer surface of B by SurðBÞ. NGðvÞ denotes the
neighborhood of v in G. We say that NGðuÞ and NGðu0Þ are
adjacent if dðu; u0Þ � 1. Otherwise, they are independent.
Likewise, any two nodes v and v0 are adjacent if dðv; v0Þ � 1.
Otherwise, they are independent. At last, we say that two unit
balls are touching each other if they have exactly one point in
common, and the common point is called touching point.

3.1 An Upper Bound on the Number of Independent
Nodes in a Unit Ball

In this section, we establish an upper bound on the number
of independent nodes in a unit ball. This can be done by
transforming this question into the famous Gregory-Newton
Problem concerning about kissing number. The kissing
number kðS3Þ (see [16] for reference) is the maximum number
of independent unit balls that can simultaneously touch the
surface of one unit ball. Newton conjectured in 1694 that
kðS3Þ ¼ 12. The conjecture was not confirmed until 1874 by
Hoppe [18].

Lemma 3.1. The kissing number kðS3Þ ¼ 12.

As a corollary, we have

Corollary 3.2 ([19]). �ðT Þ, the maximum degree of a minimum
spanning tree T in a UBG G is at most 12.

In addition, we present the following useful lemma:

Lemma 3.3 ([19]). For any vertex u in a UBG G, the
neighborhood NGðuÞ contains at most 12 independent vertices.

3.2 An Upper Bound on the Number of Independent
Nodes in Two Adjacent Unit Balls

In this section, we focus on the problem asking how many
independent nodes can be contained in two adjacent unit
balls. As a consequence of Lemma 3.3, there are at most 24
independent nodes in the union of two unit balls. In this
section, we use Euler’s Formula to improve this upper
bound to 22.

Let B1 and B2 be two adjacent unit balls with centers u1

and u2, respectively. Suppose that I ¼ fv1; v2; . . . ; vtg is the
set of independent nodes contained in ðB1 [B2Þ n ðB1 \B2Þ.
In order to obtain the main result of this section, we shall
show that t � 20.

The basic idea of this proof is similar to that in deriving an
upper bound for kissing number in [16]. First, we “project”
each independent node in I to the surface of B1 [B2. Then,
join the points with curves on the surface SurðB1 [B2Þ to
divide SurðB1 [B2Þ into patches, and thus, obtain a graph
embedding on the sphere (each patch is a face in terms of
Graph Theory). By properly choosing the way of drawing the
curves, lower bounds for the areas of faces can be obtained.
Finally, using the fact that the sum of the areas of all faces is
the area of SurðB1 [B2Þ and applying Euler’s Formula
tþ f � e ¼ 2, where t; f; e are the number of vertices, faces,
and edges in the embedded graph, respectively, the upper
bound for the number of vertices can be obtained.

For this purpose, we first “project” independent nodes in
I to the surface of B1 [B2 as follows: For each i ¼ 1; 2; . . . ; t,
if vi 2 B1 nB2 (respectively, B2 nB1), we draw a radial from
u1 (respectively, u2) going through vi, and denote by Pi the
intersection point of this radial with SurðB1Þ (respectively,
SurðB2Þ). Then, fP1; P2; . . . ; Ptg are all on SurðB1 [B2Þ.
Furthermore, since vis are independent, we see that for any
two distinct integers i and j, dðPi; PjÞ > 1, that is, Pis are
also independent.

There are two difficulties, which are different from
dealing with kissing number in one ball. The first is how to
draw the curves to connect the points, especially when two
points are in different balls. The second is how to obtain the
lower bounds for the areas of the faces. In fact, it is easier to
deal with faces lying completely on the surface of one ball
(call such a face regular). When a face “strides over” two
balls (call such a face striding), the area is much smaller than
that of a regular one. Hence, we have to deal with these two
different types of faces separately and find out an upper
bound for the number of striding faces.

3.2.1 Partition of the Surfaces of B1 [B2

In this section, we introduce a way to draw curves connecting
Pis. We are going to establish a curve between any Pi and Pj
whose distance is between 1 and 3 arccos(1/7)�. Then, by
[16], such drawing will give us a planar graph embedded on
the union of the surfaces SurðB1Þ and SurðB2Þ. Later, we will
use this graph to estimate the maximum number of
independent nodes in two adjacent unit balls. Clearly, the
intersection of SurðB1Þ and SurðB2Þ is a circle. Let us denote
it by L. Now, for any two points Pi and Pj such that
1 < dðPi; PjÞ < 3 arccosð1=7Þ=�, join them by a curve on
SurðB1 [B2Þ in the following way:

Case 1. If they are on the surface of a same unit ball, join
them by a geodesic arc ‘. If ‘ does not completely lie on
SurðB1 [B2Þ, then ‘ intersectsL at two pointsQ1 andQ2 (see
Fig. 1). Without loss of generality, suppose that Q1 is nearer
to Pi on arc ‘. The curve joining Pi and Pj is composed of the
union of the three arcs ‘PiQ1

, LQ1Q2
, and ‘Q2Pj , where ‘PiQ1

is
the segment on arc ‘ between the two points Pi and Q1, etc.

Case 2. If both Pi and Pj are on the surfaces of different
unit balls, say, Pi 2 SurðB1Þ and Pj 2 SurðB2Þ, let � be the
plane going through the three points Pi; Pj, and Q0, where
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Q0 is the middle point of the line segment u1u2 (see Fig. 2).
Then � intersects with the circle L at two points, let Q be the
one which is nearer to Pi and Pj. Join Pi and Pj to Q by
geodesic arcs ‘PiQ and ‘QPj . The curve joining Pi and Pj is
composed of the union of ‘PiQ and ‘QPj .

Note that no two curves drawn can intersect. This is
because, on one hand, since the distance between any two
Pis is greater than 1, it can be calculated that for any four
points, the two diagonals of the quadrilateral formed by the
four points cannot be both smaller than 3 arccosð1=7Þ=�. On
the other hand, by our construction, only those points at
distance smaller than 3 arccosð1=7Þ=� are joined. Hence, a
curve can meet another curve only at same point Pi, and
thus, gives a sphere embedding of a graph. Recall that the
Euler’s Formula can only be applied to a concrete
embedding of a graph.

3.2.2 Lower Bound for the Area of the Face

Now we give the lower bounds for the areas of the faces of
the above concrete embedding of graph. For a face S
bounded by k-curves, we call it a k-face. Denote by AðSÞ the
area of S. LetAk be the minimum area of a regular k-face andeAk be the minimum area of a striding k-face. A k-face whose
boundary is “cut” by L as in Case 1 is regarded as a striding
face. A k-face whose boundary “touch” L at one point is
regarded as regular.

Lemma 3.4. For the regular faces of the above concrete embedding
of graph, A3 ¼ 0:5512 . . . , A4 ¼ 1:3338 . . . , A5 ¼ 2:2261 . . . .
In general,

Ak � ðk� 2ÞA3: ð1Þ

For the striding faces, eA3 ¼ 0:4076 . . . , eA4 ¼ 0:9949 . . . ,eA5 ¼ 1:8732 . . . . In general,

eAk � ðk� 2Þ eA3 for k ¼ 3; 4; 5; . . . : ð2Þ

Proof. The values for Aks can be found in [16, Page 11], and

the positions for k-faces whose areas achieve these

extreme values can also be found there. For a striding

k-face, it can be calculated by integral using polar

coordinate that eA3 ¼ 0:4076 . . . , and eA3 is achieved if

the position of the 3-face is like the one shown in Fig. 3;eA4 ¼ 0:9949 . . . , and eA4 is achieved if the position of the

4-face is like the one in Fig. 4; eA5 ¼ 1:8732 . . . , and eA5 is

achieved if the position of the 5-face is similar to that in

Fig. 5, etc. By using a similar approach used in [16] for

Aks, we can prove that

eAk � ðk� 2Þ eA3 for k ¼ 3; 4; 5; . . . : ð3Þ

tu

3.2.3 Main Results

Lemma 3.5. The number of independent nodes in ðB1 [B2Þ n
ðB1 \B2Þ is at most 20.

Proof. The proof of this lemma is equivalent to show t � 20.

Denote by fi the number of all i-faces (including regular

i-faces and striding i-faces), and efi the number of

striding i-faces that strides over L.
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Fig. 1. Join two points on the surface of a same ball.

Fig. 2. Join two points on the surfaces of different balls.

Fig. 3. An extreme position for eA3. The coordinates of P1; P2; P3 are
P1 ¼ ð0; 0; 1Þ, P2 ¼ ð0; 1; 1Þ, and P3 ¼ ð

ffiffiffi
2
p

=2; 1=2; 1=2Þ (note that
dðP1; P2Þ ¼ dðP2; P3Þ ¼ dðP3; P1Þ ¼ 1).

Fig. 4. An extreme position for eA4. The coordinates of the points are
P1 ¼ ð0;�0:1816; 0:9834Þ, P2 ¼ ð0:6241; 0:5; 0:6004Þ, P3 ¼ ð0; 1:1816;
0:9834Þ, and P4 ¼ ð�0:6241; 0:5; 0:6004Þ (note that dðP1; P2Þ ¼ dðP2;
P3Þ ¼ dðP3; P4Þ ¼ dðP4; P1Þ ¼ 1 and dðP1; P3Þ ¼ 3 arccosð1=7Þ=�).



By Euler’s Formula and Handshaking Theorem [20],

2t� 4 ¼ 2e� 2f

¼ 3f3 þ 4f4 þ 5f5 þ � � � � 2ðf3 þ f4 þ f5 þ � � �Þ
¼ f3 þ 2f4 þ 3f5 þ � � � :

ð4Þ

Then, by Lemma 3.4 and (4), we have

6� � A3ðf3 � ef3Þ þ eA3
ef3 þA4ðf4 � ef4Þ þ eA4

ef4

þA5ðf5 � ef5Þ þ eA5
ef5 þ � � �

� A3ðf3 þ 2f4 þ 3f5 þ � � �Þ
� ðA3 � eA3Þðef3 þ 2ef4 þ 3ef5 þ � � �Þ
¼ A3ð2t� 4Þ � ðA3 � eA3Þðef3 þ 2ef4 þ � � �Þ;

ð5Þ

where 6� is an upper bound for the area of SurðB1 [B2Þ.
This equation means that if we find the upper bound of
ef3 þ 2ef4 þ � � � , we can get the maximum value of t.

We first assume that every striding face is a 3-face. Let
S1 ¼ P1P2P3 and S2 ¼ P2P3P4 be two 3-faces such that the
common arc P2P3 goes through L (see Figs. 6a and 6b).
Then the projection of S1 [ S2 onto L has arc length at
least 0.8744, which can be obtained from the extreme
position shown in Fig. 6c. Since the arc length of L is

ffiffiffi
3
p

�,
and

ffiffiffi
3
p

�=0:8744 ¼ 6:223, we see that there are at most six
such pairs of 3-faces. Hence, ef3 � 13. Recall that we have
assumed that efi ¼ 0 for i > 3 and have proved thatef3 � 13. Hence, it follows from (5) that t � 20:792. Since t
is an integer, we have t � 20.

Next, suppose that there are striding i-faces for some
i > 3. We shall transform this situation into one which

can be dealt with by the above analysis. This is done by
further dividing striding i-faces (i > 3) into smaller ones
satisfying the following three properties that are essential
to the above analysis:

1. Each striding 3-face has area at least eA3.
2. Each regular k-face has area at least ðk� 2ÞA3.
3. The projection of each pair of striding 3-faces onto

L occupies arc length at least 0.8744 (hence, ef3

cannot be too large).

Let S ¼ P1P2P3P4 be a striding 4-face. If each ball

contains two of Pis, say, P1; P2 2 SurðB1Þ and P3; P4 2
SurðB2Þ as in Fig. 7a, then we can join P2 with P3 with a

curve such that each of the two 3-faces P1P2P3 and P2P3P4

has area at least eA3 (this can be done since eA4 � 2 eA3).

Moreover, S can be viewed as the union of a pair of

striding 3-faces such that the projection of them onto L

occupies arc length greater than 0.8744.

Now, suppose that one ball contains only one ofPis, say,

P1; P2; P3 2 SurðB1Þ andP4 2 SurðB2Þ (see Fig. 7b). JoinP2

with P3 with a curve such thatAðP1P2P3Þ ¼ 0:5512. Recall

that AðSÞ � 0:9949, we have AðP2P3P4Þ � 0:4437 > eA3.

Hence,S can be viewed as the union of a regular 3-face and

a striding 3-face. Furthermore, the projection of the
striding 3-face P2P3P4 onto L occupies arc length no

smaller than that of an original striding 3-face does. This is

becauseP2 andP3 are not joined in our construction, which

means dðP2; P3Þ � 3 arccosð1=7Þ=� > the euclidean dis-

tance between the end points of a side of an original

striding 3-face.

Let S ¼ P1P2P3P4P5 be a striding 5-face. If one ball

contains two of Pis, say, P1; P2; P3 2 SurðB1Þ and P4; P5 2
SurðB2Þ (see Fig. 8a). Join P5 with P2 and P3 such that

each of the three new 3-faces P1P2P5, P2P3P5, P3P4P5 has

areas greater than eA3 (this can be done since eA5 � 3 eA3). If

one ball contains only one of Pis, say, P5 2 SurðB2Þ and

P1; . . . ; P4 2 SurðB1Þ (see Fig. 8b), join P1 with P4 with a

curve such that AðP1P2P3P4Þ ¼ 1:3338. Since AðSÞ �
1:8732, we have AðP1P4P5Þ � 0:5349 > eA3.
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Fig. 6. A pair of 3-faces striding over L. (c) The extreme position that the
projection of S1 [ S2 onto L has arc length 0.8744, where
dðP1; P2Þ ¼ dðP1; P3Þ ¼ dðP2; P4Þ ¼ dðP3; P4Þ ¼ dðP2; P3Þ ¼ 1.

Fig. 7. Dividing a 4-gon striding over L.

Fig. 8. Dividing a 5-gon striding over L.

Fig. 5. An extreme position for eA5. The coordinates of the points are
P1 ¼ ð0; 0; 1Þ, P2 ¼ ð0:7690;�0:3984; 0:5Þ, P3 ¼ ð0:8631; 0:5; 0:0710Þ,
P4 ¼ ð0:7690; 1:3984; 0:5Þ, and P5 ¼ ð0; 1; 1Þ (note that dðP1; P2Þ ¼
dðP2; P3Þ ¼ dðP3; P4Þ ¼ dðP4; P5Þ ¼ dðP5; P1Þ ¼ 1 and dðP3; P1Þ ¼ dðP3;
P5Þ ¼ 3 arccosð1=7Þ=�).



In general, for any i-face with i > 3, we can divide it
into some regular j-faces with area at least Aj and some
striding 3-faces with area at least eA3. Furthermore, the
projection of a new striding 3-face thus obtained onto L
occupies an arc length no smaller than that of an original
striding 3-face does. Hence, by a similar argument as
before, we have t � 20. tu

Now, we are ready to prove our main lemma in this

section.

Lemma 3.6. The number of independent nodes in the union of

two adjacent unit balls is at most 22.

Proof. Let B1; B2 be two adjacent unit balls. Suppose that

I ¼ fv1; . . . ; vsg is the set of independent nodes in

B1 [B2. If B1 \B2 contains at least two of vis, then, by

Lemma 3.3, s � 2� 12� 2 ¼ 22, and we are done. Hence,

suppose that B1 \B2 contains at most one of vis.

According to Lemma 3.5, ðB1 [B2Þ n ðB1 \B2Þ contains

at most 20 of vis and s � 20þ 1 ¼ 21. tu

Then, following the same line of [8, Theorem 1], the main

result of this section can be obtained.

Theorem 3.7. Let M be an MIS of a UBG G. Then

jMj � 10:917 OPTCDS þ 1:083, where OPTCDS is the num-

ber of vertices in an optimal CDS of G.

Proof. Let C be a connected dominating set of G with jCj ¼
OPTCDS and G½C� be the subgraph of G induced by C.

Note thatG½C� is a UBG sinceG is a UBG. By Corollary 3.2,

G½C� has a minimum spanning tree T with maximum

degree at most 12. We will show that there are at most

10:917jT j þ 1:083 independent nodes in the neighborhood

of T by induction on jT j. When jT j ¼ 1 or 2, the assertion

is true by Lemmas 3.3 and 3.6. Hence, we suppose that

jT j � 3. Since T is a tree, there is a nonleaf node v such

that it is adjacent to at most one nonleaf node.
Let u be the nonleaf neighbor of v or the root of T .

Now, suppose that x1; . . . ; xkðk � 11Þ is a set of leaf
neighbors of v. Then, T 0 ¼ T � fv; x1; . . . ; xkg is a mini-
mum spanning tree of G½C � fv; x1; . . . ; xkg�, which is a
UBG induced by all the nodes in C � fv; x1; . . . ; xkg.
Furthermore, the maximum degree of T 0 is 12 due to the
following reasons: First, since T is a minimum spanning
tree with maximum degree 12, T 0 is also a spanning tree
of G½C � fv; x1; . . . ; xkg� with maximum degree 12. Now,
suppose that T 0 is not a minimum spanning tree. Then,
there has to be another minimum spanning tree T 00. Now,
T 00 þ fuv; vx1; . . . ; vxkg is a spanning tree of G½C� with a
smaller weight than T , which contradicts to our
assumption that T is a minimum spanning tree.

By inductive hypothesis, there are at most
10:917ðjT j � k� 1Þ þ 1:083 independent nodes in the
neighborhood of T � fv; x1; . . . ; xkg. Furthermore, by
Lemma 3.3, for any node xið1 � i � kÞ, there are at most
11 independent nodes in its neighborhood also indepen-
dent from v and by Lemma 3.6, the neighborhood of v
and xk contains at most 21 independent nodes also
independent from u. Therefore, there are at most

10:917ðjT j � k� 1Þ þ 1:083þ 21þ 11ðk� 1Þ
¼ 10:917jT j þ 1:083þ 0:083k� 0:917

� 10:917jT j þ 1:083

independent nodes in the neighborhood of T . tu

4 CDS-UBG: A NEW CONNECTED DOMINATING

SET COMPUTATION ALGORITHM IN UNIT BALL

GRAPHS

So far, we have shown that the maximum number of
isolated nodes in a unit ball is no more than 22. In this
section, we introduce a distributed greedy algorithm, D-
CDS-UBG, for the MCDS problem in UBGs. Before
introducing D-CDS-UBG, we first present its centralized
version, C-CDS-UBG. This is because this centralized
version is both simpler to understand its behavior and
easier to show its PR than D-CDS-UBG. Note that C-CDS-
UBG is a round-based algorithm and each round requires to
test a small number of nodes, which are adjacent to
processed nodes in the previous rounds. Therefore, C-
CDS-UBG is easy to be converted into a distributed
algorithm. We show that the PR of C-CDS-UBG is 14.937,
and so is that of D-CDS-UBG’s by exploiting our results in
the previous section. We also prove that both the time and
message complexities of D-CDS-UBG is Oðn2Þ. The follow-
ing notations are frequently used in the this section:

. G ¼ ðV ;EÞ ¼ ðV ðGÞ; EðGÞÞ is a connected UBG.

. Eucdistðu; vÞ is the euclidean distance between two
nodes u and v in V ðGÞ.

. NðuÞ ¼ fvjv 2 V ðGÞ n fug and Eucdistðu; vÞ � 1g.

. N½x� ¼ NðxÞ [ fxg.

. For a node set C, NðCÞ ¼ ð
S
x2C NðxÞÞ n C.

. Mv;C is a set of MIS nodes adjacent with v and not
in C.

4.1 C-CDS-UBG: A Centralized CDS Computation
Algorithm in UBGs

C-CDS-UBG is formally described in Algorithm 1. Roughly,
this algorithm works as follows: Given G ¼ ðV ;EÞ, it first
computes an MIS M0 such that for any M 	M0, the
distance between M and M0 nM is exactly two hops. To
compute such M0, we use the idea in [7]. To generate a CDS,
the algorithm connects nodes in M0 by selecting some nodes
in V nM0 using a greedy strategy. C-CDS-UBG is a round-
based algorithm. It puts one MIS node in a set C and grows
C by repeatedly adding a non-MIS node v together with its
adjacent MIS nodes such that jMv;C j is maximized. Note that
the size of the tested node in each round is small and they
are adjacent to C. Therefore, it is easy to build a distributed
algorithm from C-CDS-UBG. Now, we introduce some
lemmas and theorems to prove the PR of Algorithm 1.

Algorithm 1. C-CDS-UBG (GðV ;EÞ)
1: Set M0 ¼ ;;W ¼ ;; V 0 ¼ V .

2: Pick a root r 2 V 0 with a maximum degree.

3: Set M0 ¼ frg, W ¼ NðrÞ, and V 0 ¼ V 0 n ðfrg [NðrÞÞ.
4: while V 0 6¼ ; do

5: Pick x 2 NðWÞ such that jNðxÞ \ V 0j is maximized.
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6: Set M0 ¼M0 [ fxg, W ¼W [ ðNðxÞ \ V 0Þ, and
V 0 ¼ V 0 n ðfxg [NðxÞÞ.

7: end while

8: Set C ¼ frg and M ¼M0 � frg.
9: while M 6¼ ; do

10: Pick a node v 2 NðCÞ such that

jMv;C j ¼ maxfjMx;C j j x 2 NðCÞg.
11: Set C ¼ C [ fvg [Mv;C and M ¼M nMv;C .

12: end while

13: Return C.

Lemma 4.1. Suppose that M0 is obtained after Line 7 of C-CDS-

UBG. Then, for any M 	M0, the distance between M and

M0 nM is exactly two hops.

Proof. In Algorithm 1, W is a set of nodes, which are
adjacent to M0 and after Line 3, M0 ¼ frg. In Line 5, to
grow M0, we pick x 2 NðW Þ. Since x is adjacent to a
node in W , which is adjacent to a node in M0, the hop
distance between x and M0 is exactly two hops. In Line
6, we set M0 ¼M0 [ fxg, and thus, for any M 	M0,
the distance between M and M0 nM becomes exactly
two hops. tu

Theorem 4.2. After Algorithm 1 is executed, M0 is an MIS and

C is a CDS.

Proof. By its definition, M0 is an MIS if

1. 8v 2 V , either v 2M0 or 9u 2M0 : v 2 NðuÞ and
2. 8u; v 2M0; ðu; vÞ 62 EðGÞ.

In Lines 3 
 7, when a node in NðWÞ is included in M0,
its neighbors are included in W , and thus, those
neighbors cannot be included in M0 later, which means
that there cannot be two adjacent MIS nodes. Further-
more, W is a set of nodes, which are adjacent at least one
node in M0 and after Line 7, all nodes are in M0 or W
since V 0 is empty. Therefore, M0 is an MIS.

After Line 8, C contains only one node r. Since the
distance between any two nodes in M0 is exactly two
hops, as long as C is an incomplete CDS, there has to be a
node v 2 NðCÞ such that v is connecting C and some
nodes inM. And therefore, by selecting such v repeatedly,
we can connect r to the rest of other nodes inM0. SinceM0

is an MIS and we connect them, C is a CDS. tu
Lemma 4.3. For any node u 2 G, NðuÞ contains at most 12

independent nodes.

Proof. Since G is a UBG, this is true by Lemma 3.3. tu
Lemma 4.4. After Algorithm 1 is finished, jC nM0j �

4:02jOPTCDS j, where OPTCDS is an optimal CDS of G.

Proof. Suppose OPTCDS ¼ fx1; x2; . . . ; xtg, which is an
optimal CDS of G. Let

. Si ¼ fxig [ ðNðxiÞ nOPTCDSÞ for i ¼ 1, and

. Si ¼ fxig [ ððNðxiÞ nOPTCDSÞ n
Si�1
j¼1 SjÞ for i � t.

Then, fS1; S2; . . . ; Stg forms a partition of V ðGÞ.
Let’s consider the following weighting scheme. That

is, when we select a node v and add fvg [Mv;C to C, each
MIS node x in Mv;C is assigned a weight wðxÞ ¼ 1=jMv;C j.
Note that if C is not a CDS, then, by Lemma 4.1, we have
jMv;C j > 0. Also,

X
8Si

X
x2M0\Si

wðxÞ

is the upper bound of jC nM0j in Algorithm 1.
Now, we show that for each i,

P
x2M0\Si wðxÞ � 4:02.

When M0 \ Si ¼ ;, the proof is trivial, and thus, we
assume that M0 \ Si 6¼ ;. Denote by aj ¼ ðM0 \ SiÞ n Cj,
where Cj is the set C after the jth iteration, and C0 ¼ frg
is the initial set. Suppose that je is the first index of the
iteration after which all nodes of M0 \ Si are included in
C. Hence, aj > 0 for j ¼ 0; 1; . . . ; je � 1 and aje ¼ 0. To
simplify our statement, we assume aj�1 � aj > 0 for
j ¼ 1; 2; . . . ; je. After the first iteration, the number of MIS
nodes which receive weights is a0 � a1 and the weight
assigned to each node is at most 1=ða0 � a1Þ. Since
a0 � a1 > 0, some MIS nodes in M0 \ Si are added to C in
the first iteration. Hence, before the jth iteration for
j 2 f2; 3; . . . ; jeg, xi is adjacent to C. By the greedy
strategy, we see that jMvj;Cj�1

j � jMxi;Cj�1
j, where vj is the

non-MIS node chosen in the jth iteration by the
algorithm. After the jth iteration, aj�1 � aj nodes of M0 \
Si receive weights and the weight assigned to each node
is 1=jMvj;Cj�1

j � 1=jMxi;Cj�1
j ¼ 1=aj�1. Therefore,

X
x2M0\Si

wðxÞ � 1

a0 � a1
ða0 � a1Þ þ

Xje
j¼2

1

aj�1
ðaj�1 � ajÞ:

Since we have assumed that aj�1 � aj > 0 for any

j ¼ 1; 2; . . . ; je, the number of MIS nodes in ðM0 \ SiÞ n
Cj�1 strictly decreases in every iteration. Hence, by

Lemma 4.3, je � 12 and the second term on the right of

the above expression is bounded by Hð11Þ, where H is

the harmonic function. Therefore, we have

X
x2M0\Si

wðxÞ � 1þHð11Þ � 4:02:

ut

Theorem 4.5. The size of the node set C generated by Algorithm 1

is no more than 14:937jOPTCDSj þ 1:083, where OPTCDS is

an optimal CDS of G and jOPTCDS j ¼ t.
Proof. By Theorem 3.7, jM0j � 10:917jOPTCDS j þ 1:083, and

by Lemma 4.4, Algorithm 1 adds at most 4:02jOPTCDSj to
connect the nodes in M0. Therefore,

jCj ¼
Xt
i¼1

X
x2M0\Si

wðxÞ þ jM0j

� 4:02tþ 10:917jOPTCDSj þ 1:083

� 14:937jOPTCDSj þ 1:083:

ut

4.2 D-CDS-UBG: A Distributed CDS Computation
Algorithm in UBGs

In this section, we introduce D-CDS-UBG, a distributed

version of C-CDS-UBG. To compute a CDS of a UBG, D-CDS-

UBG first runs D-MIS-UBG to get an MIS in a distributed

manner. Then, it connects the MIS nodes by adding some

nodes so that a subgraph induced by them is connected. We
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skip the PR analysis of D-CDS-UBG since its greedy strategy
is equal to C-CDS-UBG’s, and so are their PRs.

4.2.1 D-MIS-UBG: A Distributed MIS Computation

Algorithm in UBGs

D-MIS-UBG is a simple coloring algorithm to compute an
MIS of a UBG. This algorithm assumes that all nodes in a
given graph are initially colored white. As the algorithm
proceeds, a node is colored black if it is chosen to be in an
MIS. Every node adjacent to a black node is colored gray.
After this algorithm is terminated, the set of black nodes is
an MIS. Now, we present the description of D-MIS-UBG.
Note that in the description of D-MIS-UBG, CðxÞ denotes a
set of children of x, and P ðxÞ denotes a parent of x.

1. For every node x, CðxÞ ¼ NðxÞ. Select a node r with
the maximum degree as the root. r colors itself black
and the nodes in CðrÞ gray. Every node x 2 CðrÞ sets
P ðxÞ ¼ r and CðxÞ ¼ CðxÞ nN½r�.

2. r broadcasts an ASK message to white nodes x 2
CðyÞ for all gray nodes y. When a nonwhite node
receives this message, it forwards this to its children
nodes. When a white node x receives the ASK
message, it sends back an REP ðx;mðxÞÞ message to
r, where mðxÞ is the number of white nodes in N ½x�.

3. When a nonwhite node x receives REP messages
from all nodes in CðxÞ, it picks a node y 2 CðxÞ such
that mðyÞ is maximum, sets IndexðxÞ ¼ y, mðxÞ ¼
mðyÞ, and sends REP ðx;mðxÞÞ message to P ðxÞ.

4. When the root r receives REP messages from all
nodes in CðrÞ, it picks one node x 2 CðrÞ such that
mðxÞ is maximum. If mðxÞ ¼ 0, then the set of black
nodes is an MIS and r finishes D-MIS-UBG.
Otherwise, r sends a JOIN message to x.

5. On receiving a JOIN message by a node x, if x is
gray, then it forwards the JOIN message to the node
IndexðxÞ. If x is white, then x colors itself black and
all white nodes in CðxÞ gray, P ðxÞ is set to be the
node which sends JOIN message to x, each new
gray node y 2 CðxÞ sets P ðyÞ ¼ x. At last, for all
n 2 L, where L is a set of the newly colored nodes, n
sends a DELETE message to z 2 NðnÞ. z deletes n
from CðzÞ if applicable. The algorithm is repeated
from Step 2.

4.2.2 D-CDS-UBG: A Distributed CDS Computation

Algorithm in UBGs

This algorithm exploits D-MIS-UBG to have an MIS, and
based on the MIS, it computes a CDS of a UBG. The parent-
children relationship built while executing D-MIS-UBG will
be ignored and a new one will be established. At the end of
execution, the set of blue nodes will be a CDS. A message
between two blue nodes goes through the shortest path
between them over the set of blue nodes.

1. Run D-MIS-UBG ðGÞ.
2. r broadcasts a IGNORE message to all other nodes.

A node x sets CðxÞ the set of gray nodes adjacent to x
after receiving the message.

3. r colors itself blue, and every node x 2 CðrÞ sets
P ðxÞ ¼ r and CðxÞ ¼ CðxÞ nN½r�.

4. r broadcasts an ASK message to gray nodes y 2
NðxÞ for every blue node x. That is, r sends the
message to x first and x broadcasts the messages to
its gray neighbors. When y receives the message, it
sends back an REP ðx; bðxÞÞ message, where bðxÞ is
the number of black nodes adjacent to x.

5. For every blue node x which is on the path between
the sender of a reply message and r, x waits for reply
messages from all nodes in CðxÞ. Then, x picks one
node y 2 CðxÞ with maximum bðyÞ, sets IndexðxÞ ¼
y and bðxÞ ¼ bðyÞ, and sends an REP ðx; bðxÞÞ
message to P ðxÞ.

6. When the root r receives REP messages from all
nodes in CðrÞ, it picks one child x 2 CðrÞ such that
bðxÞ is maximum. If bðxÞ ¼ 0, then the set of blue
nodes is a CDS and the computation is finished by
broadcasting an FIN message through the CDS. If
mðxÞ > 0, then r sends a JOIN message to x.

7. On receiving a JOIN message, if the node x is blue,
then it forwards the JOIN message to the node
IndexðxÞ; if the node x is gray, then x colors itself
blue and all black nodes adjacent to x are also
colored blue, P ðxÞ is set to be the node that sends
JOIN message to x, each other new blue node y sets
P ðyÞ ¼ fxg. At last, for all n 2 L, where L is a set of
the new blue nodes, n sends a DELETE message to
z 2 NðnÞ. z deletes n from CðzÞ if applicable. The
algorithm is repeated from Step 4.

Theorem 4.6. Both the time and message complexities of D-CDS-
UBG are Oðn2Þ, where n is the number of nodes in a given
input UBG.

Proof. The overall behavior of both D-MIS-UBG and the rest
part of D-CDS-UBG is similar. First, both of them are
executed for several rounds. In each round, one node in a
subset sends a message to nodes adjacent to the subset,
and later one preferred node among the neighbors of the
subset is selected by the initiator and added to the subset.
Therefore, both the time and message complexities of
each round are equal to OðnÞ. Since we can have at most
OðnÞ rounds, the total time and message complexities of
D-CDS-UBG are Oðn2Þ. tu

5 SIMULATION RESULT

In this section, we compare D-CDS-UBG with the only and
the best distributed algorithm by Butenko and Ursulenko to
solve MCDS in UBGs [7]. We do not consider Zhong et al.’s
work [14] for our comparison due to their problems as we
mentioned earlier in Section 1. For more detail, see the
Appendix. We do not consider Zou et al.’s work since their
algorithm does not work in distributed environments [9].
For the simulations, we prepare a 100 � 100 � 100 three-
dimensional virtual space and deploy wireless nodes. The
number of nodes varies from 50 to 150 by increasing 10. We
use 20, 25, 30, or 35 as the maximum transmission range of
the nodes. Under the same parameter setting, 100 connected
UBGs are randomly generated, a CDS of each graph is
computed, and an average CDS size is calculated for each
algorithm. In both Figs. 9 and 10, we use the following
notations to represent each graph: We denote a solution
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obtained using our distributed algorithm by D-CDS-UBG.
BU08 represents a graph computed using Butenko and
Ursulenko’s. The last number represents the maximum
transmission range of each node used for generating that
graph, which can be 20, 25, 30, or 35.

Fig. 9 shows how the performance of each algorithm
changes as the maximum transmission range grows and as
the size of network increases. Both algorithms generate the
largest CDSs, on average, when the maximum transmission
range is 20. As the transmission range increases, the average
size of CDSs decreases. This is natural since with a larger
maximum transmission range, one CDS node can dominate
more non-CDS nodes, and therefore, we need less nodes to
construct a CDS. In addition, as the size of the network
grows, the average size of CDS should increase exactly like
in the figure since we need a bigger CDS to dominate more
non-CDS nodes.

Fig. 10 shows the performance comparison of both
algorithms. Since the basic idea of D-CDS-UBG to compute
an MIS is same with that of BU08’s, the same MISs are used
as inputs of both algorithms. Thus, the difference on the
performance of both algorithms comes from their greedy
strategies. When the maximum transmission range is 20,
D-CDS-UBG is slightly better than BU08. The performance
gap between them grows as we increase the maximum
transmission ranges. We can also learn that the performance
gap becomes apparent as the size of the network grows.
From these results, we can conclude that 1) D-CDS-UBG
works better than BU08 in general and 2) as the density of a
network goes up, their performance gap becomes larger.

6 CONCLUSION

In this paper, we study the problem of constructing

minimum VBs in a distributed manner for 3D homogeneous

wireless networks such as USNs. This problem can be

abstracted as MCDS problem in UBGs, but it is NP-hard to

get an optimal solution. To get an approximated solution,

we improve the upper bound of size of an MIS in UBGs and
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Fig. 10. Under any parameter setting, our algorithm works better than
Butenko and Ursulenko’s, on average. The average performance gap
between them grows as the size and density of the networks increase.

Fig. 9. Both algorithms generate smaller CDSs as the maximum
transmission range increases. In addition, the size of the CDSs
increases as the size of the input graphs grows.



present two new approximation algorithms, C-CDS-UBG

and D-CDS-UBG. We introduce a centralized algorithm

C-CDS-UBG first from which we build a distributed

algorithm D-CDS-UBG. Both algorithms generate a CDS

by computing an MIS first and connecting the MIS by

adding some more nodes to the MIS. We prove that the PR

of CDS-UBG (C-CDS-UBG and D-CDS-UBG) is 14.937,

which is better than most recent work by Butenko and

Ursulenko [7]. In simulation, we show that D-CDS-UBG

outperforms the competitor’s algorithm, which coincides

with our theoretical analysis.
Now, we present some future work. First, while getting a

tighter upper bound of an MIS of a UBG, we found that
there is a gap between its current lower bound and upper
bound. Therefore, we are interested in further reducing this
gap. Second, even though the PR of D-CDS-UBG is better
than the previous work, we think that the PR of D-CDS-
UBG, 14.937, is still huge, and therefore, we believe that it
can be reduced further.

APPENDIX

PROBLEMS WITH THE ALGORITHM IN [14]

The algorithm in [14], ZWH07 in short, is a two-phase
distributed algorithm. It first computes an MIS and connects
the nodes in it to generate a CDS. A node becomes an MIS
node if all neighbors with higher weight become non-MIS
nodes because they have an MIS neighbor. Note that, in this
case, the hop distance between any two MIS nodes is at most
three hops. Once an MIS is selected, ZWH07 connects the
MIS nodes using the same greedy strategy to D-CDS-UBG.

Now, suppose that we have Fig. 11a as an input for
ZWH07. Then, nodes 1 and 4 can be selected as dominators
and nodes 2 and 3 as dominatees. Also, suppose that node 1
initiates the second phase to connect dominators. Since
node 2 has no neighboring dominators, it will report 0 as the
number of adjacent dominators to node 1. If node 1 does not
allow node 2 to be a connector, this algorithm will be
terminated and its result is not a CDS. If node 1 allows this, it
incurs another problem as follows: Suppose that we have
Fig. 11b as an input and nodes 2 and 3 are selected as
dominators. Then they can be connected by node 1.
However, since we allow any dominatee with no neighbor-
ing noncon-dominator to be a connector, n1; . . . ; ni will be
selected. Furthermore, terminal nodes n01; . . . ; n0j will be
selected eventually, which implies that the resulting CDS
can be arbitrarily larger than an optimal CDS, where a
noncon-dominator is an MIS node that is not connected to
the connected subset yet.

PROBLEMS WITH THE APPROXIMATION ANALYSIS

IN [14]

The approximation ratio of the algorithm by Zhong et al.

depends on the following two claims [14]: First, in a UBG, a

node has at most 11 neighbors, which are independent from

each other. Second, when two nodes x and y are adjacent, at

most eight independent neighbors of x are not adjacent to y.

The first claim is incorrect: a node can have 12 indepen-

dent neighbors. In fact, suppose a regular icosahedron has a

unit ball as its circumscribed sphere, then the edge length of

the icosahedron is 4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 2

ffiffiffi
5
pp
� 1:051, which implies that

any two vertices of the icosahedron are at least 1.051 away

from each other. Hence, if we put a node on the location of

each vertex of the icosahedron, we can put 12 nodes which

are independent from each other and adjacent to the center of

the unit ball.
The second claim is also incorrect: there may exist two

adjacent nodes x and y in a UBG such that x has
11 independent neighbors which are not adjacent to y. In
fact, suppose that dðx; yÞ ¼ 1, and denote the unit balls
centered at x and y by Bx and By, respectively. Embed a
regular icosahedron in Bx such that one vertex v of the
icosahedron coincides with y. Because any point in Bx \By

has distance at most 1 from y, we see that the remaining
11 vertices of the icosahedron are outside of Bx \By since
they are at least 1.051 away from v. It follows that these
11 vertices are independent neighbors of x that are not
adjacent to y.

If we apply the above corrected data to the proof in
Zhong et al.’s work, the approximation ratio of their
algorithm is in fact 22, which is equal to Butenko and
Ursulenko’s result.
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