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Abstract—In this paper, we will study a special Connected
Dominating Set (CDS) problem — between any two nodes in
a network, there exists at least one shortest path, all of whose
intermediate nodes should be included in a special CDS, named
Minimum rOuting Cost CDS (MOC-CDS). Therefore, routing
by MOC-CDS can guarantee that each routing path between
any pair of nodes is also the shortest path in the network.
Thus, energy consumption and delivery delay can be reduced
greatly. CDS has been studied extensively in Unit Disk Graph
(UDG) or Disk Graph (DG). However, nodes in networks may
have different transmission ranges and some communications
may be obstructed by obstacles. Therefore, we model network
as a bidirectional general graph in this paper. We prove that
constructing a minimum MOC-CDS in general graph is NP-
hard. We also prove that there does not exist a polynomial-time
approximation algorithm for constructing a minimum MOC-
CDS with performance ratio 𝜌𝑙𝑛𝛿, where 𝜌 is an arbitrary
positive number (𝜌 < 1) and 𝛿 is the maximum node degree in
network. We propose a distributed heuristic algorithm (called as
FlagContest) for constructing MOC-CDS with performance ratio
(1 − 𝑙𝑛2) + 2𝑙𝑛𝛿. Through extensive simulations, we show that
the results of FlagContest is within the upper bound proved in
this paper. Simulations also demonstrate that the average length
of routing paths through MOC-CDS reduces greatly compared
to regular CDSs.

Index Terms—Connected dominating set; shortest path; wire-
less network; virtual backbones; obstacle; general graph; NP-
hard;

I. INTRODUCTION

Different from wired networks, the topology of wireless
networks may change from time to time and in some networks
(e.g. wireless sensor networks), the energy of nodes is very
limited. Therefore, Table Driven and On-Demand routing
protocols are unpractical choices [1]. Inspired by contributions
of physical backbones to wired networks, a virtual backbone
[2] is believed to be very helpful in wireless networks. The
reason is that, 1). we can constrain the searching space for
routing problems from the whole network to a backbone to
reduce routing path searching time and routing table size, and
2). we can utilize such virtual backbones to do shortest path

routing.
Looking into techniques for constructing virtual backbones

in wireless networks, a Connected Dominating Set (CDS) is a
good option [3], [4]. CDS also has many other applications
which will be introduced in Section II. Because CDS can
benefit so much to wireless networks, it has always been a hot
topic since it was touched in the first place. CDS is a subset
of node set from the original network. Let 𝐺 = (𝑉,𝐸) denote
the original network and 𝑆 denote a CDS. If the subnetwork
induced by 𝑆 is denoted as 𝐺[𝑆], then the rest nodes can
induce another subnetwork named 𝐺[𝑉 ∖𝑆]. According to the
definition of CDS, it should be a connected subnetwork and
∀𝑣 ∈ 𝑉 ∖𝑆, there exists at least one adjacent node 𝑢 where
𝑢 ∈ 𝑆. Therefore, routing between any nodes can be done
through CDS. For example, if node 𝑣 has packets to send out,
it will send to 𝑢. Inside CDS, 𝑢 will forward packets to the
destination’s adjacent node in 𝑆 along the shortest path in
𝐺[𝑆] if the destination is not in 𝑆. When the destination is in
𝑆, the routing is done directly within 𝐺[𝑆].

How to choose a CDS will determine backbone based
routing protocols’ performance in wireless networks. If the
size of the CDS is too large, it is difficult to maintain it
and searching time and routing table size cannot be reduced
significantly. If the size of the CDS is too small, some
characteristics in original networks may be lost. For instance,
in routing protocols, the length of routing path is an important
factor. The smaller the length is, the fewer nodes will be
involved in routing process. The benefit is that delivery delay,
energy cost and interference will be reduced since fewer nodes
will participate in forwarding packets. In [5], Mohammed et
al. also pointed out that in wireless networks, the probability
of message transmission failure often increases when a packet
is sent through a longer path. Therefore, when designing a
routing protocol, we should take path length into considera-
tion, which can be viewed as routing cost. The shorter the
routing path is, the less the routing cost will be. That’s why
shortest path is applied to many routing protocols. However,
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Fig. 1. Illustration of regular CDS and MOC-CDS. (a) A minimum Regular
CDS. (b) A minimum MOC-CDS.

most current CDS-based routing protocols only focus on how
to reduce the size of CDS while sacrificing shortest path
properties in original networks. For example, in Fig. 1 (a), the
shortest path between 𝐴 and 𝐶 is {𝐴,𝐵,𝐶} with length of 2.
However, through the chosen minimum CDS, the routing path
between 𝐴 and 𝐶 will become {𝐴,𝐷,𝐸, 𝐹,𝐶}, with length
twice as the original shortest path. Therefore, the routing cost
between 𝐴 and 𝐶 will increase twice if we use a CDS-based
routing protocol.

To solve the problem of increasing routing cost, [5] pro-
posed a concept of diameter, which was used to evaluate the
length of the longest path between any pair of nodes in a
given connected network. Based on diameter, [6] presented
another concept — Average Backbone Path Length (ABPL).
Both of the two papers proposed algorithms to achieve balance
between the size of minimum CDS and diameter or ABPL in
subnetworks induced from CDS. Unfortunately, they did not
touch the field of a CDS with minimum routing cost, even
though they noticed the importance of routing path length.
Routing paths through their CDSs are not guaranteed to be
the shortest path within the original network.

To keep the advantages of CDS and conquer the augment
of path length in CDS, in this paper, we study a special CDS
problem — Minimum rOuting Cost Connected Dominating
Set (MOC-CDS). Besides the constraints of CDS, MOC-CDS
has an additional constraint that between any pair of nodes,
there exists at least one shortest path in the network, all of
whose intermediate nodes must be included in MOC-CDS.
Thus, packages can be delivered through MOC-CDS with
the same routing cost as that in the original network. For
example, in Fig. 1 (b), according to the constraints of MOC-
CDS, node (𝐵,𝐷,𝐸, 𝐹,𝐻) should be selected as a minimum
MOC-CDS. Hence, the shortest path between 𝐴 and 𝐶 will
still be {𝐴,𝐵,𝐶} with same length of 2 as that in the original
network.

In addition, due to the instability of topology in wireless
networks, it is necessary to update nodes’ information periodi-
cally to adapt to the change of networks’ topology. However, if
we update topology in a centralized way, the cost is extremely
high. Instead, we should implement a distributed local update
strategy. On the other hand, a huge amount of computation
cost — for instance, computing a shortest path in the whole
network, is also an obstacle to centralized algorithms when
the number of nodes in networks are dramatically large. All
in all, proposing an efficient distributed algorithm for MOC-

CDS becomes practical in wireless networks.
In wireless networks, it is assumed that nodes are homo-

geneous, sharing the same transmission range. However, in
practice, transmission ranges of all nodes are not necessarily
identical [7]. On the other hand, radio wave transmission range
[8] is not the only reason to determine whether two nodes can
communicate or not. In fact, in radio wave transmission based
wireless networks, communications among nodes may be
obstructed by some obstacles such as buildings and mountains.
Therefore, Unit Disk Graph (UDG) or Disk Graph (DG) may
not be a good choice for modeling wireless networks. In
addition, communication between two nodes should base on
the fact that the two nodes can receive messages from each
other. Based on the above factors, we model our networks as
a bidirectional general graph.

Our contributions include four aspects in this paper, as
shown below:

1) We propose a special CDS problem (MOC-CDS) which
not only has constraints of classical CDS but also has
minimum routing cost constraint.

2) We prove that selecting a minimum MOC-CDS from a
given network is NP-hard.

3) We prove that the approximation ratio in terms of CDS
size for MOC-CDS cannot achieve 𝜌𝑙𝑛𝛿 unless 𝑁𝑃 ⊆
𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)), where 𝜌 is an arbitrary positive
number (𝜌 < 1) and 𝛿 is the maximum node degree in
network.

4) We design an efficient distributed algorithm (named
FlagContest) to select a MOC-CDS with approximation
ratio of (1− 𝑙𝑛2) + 2𝑙𝑛𝛿.

The rest of the paper will be organized as follows: in
Section II, we will review some related work on CDS. In
Section III, we will introduce the communication model and
discuss the detailed description of MOC-CDS. An equivalent
problem (named 2hop-CDS) to MOC-CDS will be introduced
and we will prove that MOC-CDS is NP-hard, by proving
that 2hop-CDS is NP-hard. In Section IV, we will introduce
how to collect local information and a distributed algorithm
(named FlagContest) will be proposed to select a MOC-
CDS, based on the local information we collect. Section V
will prove the lower bound to approximate MOC-CDS. The
approximation ratio of FlagContext will also be proved. In
Section VI, simulations show that the results of FlagContest is
within the upper bound proved in this paper. Simulations also
demonstrate that the average length of routing paths through
MOC-CDS reduces greatly compared to regular CDSs. Finally,
the paper is concluded in Section VII.

II. RELATED WORK

The research work on selecting minimum CDS has never
been interrupted because of its dramatic contributions to
wireless networks. It is also well-known that computation of a
minimum CDS in a general graph is an NP-hard problem [9]
and it is even an NP-hard problem in Unit Disk Graph (UDG)
[10]. Thus, much work has been devoted to achieving a better
approximation ratio.



We first introduce some centralized algorithms for selecting
minimum CDS. We can category centralized CDS algorithms
into two types — one is 1-stage and the other is 2-stage.
In 2-stage algorithms, the first step is to select a minimum
Dominating Set (DS) and the second step is to construct a
minimum CDS using the technique of Steiner Tree [11]. DS is
a subset of nodes in original network, where nodes outside DS
have at least one adjacent node inside DS. Different from CDS,
subnetwork induced by DS may be disconnected. In contrast,
1-stage algorithms aim to select a CDS directly, skipping the
step of finding a DS. In [12], two centralized greedy algorithms
were proposed. The first algorithm is 1-stage strategy with
approximation ratio of 2𝐻(𝛿) + 2 where 𝛿 is the maximum
node degree in the network and 𝐻 is harmonic function. The
second strategy proposed in [12] is a 2-stage strategy and
yields a approximation ratio of 𝐻(𝛿) + 2. Later, based on
the main idea of [12], Ruan et al. [13] made a modification
of the selection standard of DS. Therefore, 2-stage is reduced
to 1-stage, with approximation ratio of 3 + 𝑙𝑛(𝛿). Recently,
Min et al. [14] applied maximum independent set (MIS) to the
selection of minimum DS because MIS is also a minimum DS
in undirectional graph. Min et al. [14] used an approximation
algorithm proposed by [15] for selecting MIS to obtain a
minimum DS with size of 3.8∣𝑂𝑃𝑇 ∣ + 1.2 and Steiner Tree
with minimum number of Steiner nodes (ST-MSN) [16][17],
was used in the second stage. In [14], Min et al. extended the
3-approximation algorithm in Euclidean plane [16] to a unit-
disk graph while keeping the approximation ratio the same.
This extended algorithm was applied to construct a Steiner
Tree in which terminal points are nodes selected from the first
stage. As a result, Min achieved an algorithm for selecting a
minimum CDS with size of 6.8∣𝑂𝑃𝑇 ∣ at most.

Due to the limitations of centralized algorithms mentioned
in Section I, many efficient distributed algorithms are proposed
for selecting a minimum CDS. Motivated by [18], we can
divide unweighted CDS into three categories. The first one
is greedy CDS construction. Das et al. [19] implemented the
two centralized algorithms in [12] in a distributed way. They
approximated a minimal CDS 𝐶∗ with a performance ratio of
2𝐻(𝛿)+1 in 𝑂((𝑛+∣𝐶∗∣)𝛿) time, using 𝑂(𝑛∣𝐶∗∣+𝑚+𝑛𝑙𝑜𝑔𝑛)
messages, where 𝑚 is the cardinality of the edge set. The
second one is DS based CDS construction. Most algorithms
in this type are divided into two phases. The first phase is to
construct a DS using the technique of MIS. And add more
nodes to make DS be a CDS in the second phase using
the technique of Steiner Tree. Butenko et al. [20] proposed
a Leader algorithm to achieve an approximation ratio of
8∣𝑂𝑃𝑇 ∣+1 same as that in [21] with time complexity of 𝑂(𝑛)
and message complexity of 𝑂(𝑛 log 𝑛). The last type should
be pruning based CDS construction. The main idea of this type
is that a CDS is constructed firstly with many more redundant
nodes. Then prune the redundant nodes from selected CDS to
construct a minimum CDS. A typical algorithm of this type
is that proposed in [22]. They achieved an approximation of
𝑂(𝑛) with time complexity of 𝑂(𝛿3).

Due to the fact that not all nodes are homogenous in

B

(a) (b)

A

B

O
b
sta

cle

C

A

D

C

D

Fig. 2. An example of our network model. (a) A network in which nodes
have different transmission ranges and an obstacle exists between 𝐴 and 𝐷.
(b) The corresponding graph.

a network, different nodes may have different transmission
ranges. Therefore, [7] studied CDS in Disk Graph (DG).

In addition, CDS has many applications in wireless net-
works. It can be used in routing [23], broadcasting [24], and
topology control [25].

III. PROBLEM STATEMENT

In the section, we’ll introduce communication model us-
ing graph theory. We will also define MOC-CDS formally.
Moreover, we transfer MOC-CDS into an equivalent problem
named 2hop-CDS and prove that they are NP-hard in general
graph.

A. Network Model

In wireless networks, nodes may have different transmission
ranges. For example, in Fig. 2 (a), nodes 𝐴, 𝐵, 𝐶, and 𝐷 have
transmission ranges of 𝑟𝐴, 𝑟𝐵 , 𝑟𝐶 and 𝑟𝐷 respectively, where
𝑟𝐷 > 𝑟𝐴 > 𝑟𝐶 > 𝑟𝐵 . 𝐴 is out of 𝐵’s transmission range
while 𝐵 is in 𝐴’s transmission range. As a result, 𝐴 and 𝐵
cannot communicate with each other normally because even
though 𝐵 can receive messages from 𝐴, but 𝐴 cannot hear
from 𝐵. Thus, two nodes can communicate only when each
of them is within the other’s transmission range. That’s why
𝐴 and 𝐶 can communicate with each other while 𝐴 and 𝐵
cannot communicate.

Besides transmission range, presence of obstacle can also
prevents communications between two nodes. Two nodes
with spatial position close to each other may not be able
to communicate directly, since radio wave transmission can
be obstructed by an obstacle. In [8], Frank et al. introduced
that obstacles can cause diffraction, scattering, blocking, and
reflection. In our paper, we only consider blocking. In Fig.
2 (a), 𝐴 and 𝐷 are within each other’s transmission range,
however, there is a tall wall between 𝐴 and 𝐷 and the wall
prevents radio wave transmission between 𝐴 and 𝐷. Therefore,
𝐴 cannot communicate with 𝐷.

Based on the two facts above, we model a network as a
connected bidirectional general graph 𝐺 = (𝑉,𝐸) in which
𝑉 represents node set in network and 𝐸 represents link set
in network. ∀𝑢, 𝑣 ∈ 𝑉 , there exists an edge (𝑢, 𝑣) in 𝐺 if
and only if: 1). 𝑢 is in 𝑣’s transmission range in the network,



2). 𝑣 is also in 𝑢’s transmission range, and 3). there is no
obstacle preventing radio wave transmission between 𝑢 and
𝑣. In Fig. 2(b), a general graph is built up from the network
in Fig. 2(a), based on the rules mentioned above. In addition,
we assume that the graph corresponding to the network is
connected. Given a node set 𝐷 ⊆ 𝑉 , 𝐷 is said to be connected
only when 𝐷 can induce a connected subgraph from 𝐺.

B. Problem Definition

In this paper, a shortest path between 𝑢 and 𝑣 is a path
whose number of hops is the smallest among all paths between
𝑢 and 𝑣. Distance between 𝑢 and 𝑣 is the number of hops on
the shortest path between them, denoted as 𝐻(𝑢, 𝑣). 𝐻(𝑢, 𝑣) is
also viewed as the routing cost between 𝑢 and 𝑣. Let 𝑝(𝑢, 𝑣) =
{𝑢,𝑤1, 𝑤2, ..., 𝑤𝑘, 𝑣} be a shortest path between node 𝑢 and 𝑣.
𝐻(𝑢, 𝑣) = ∣𝑝(𝑢, 𝑣)∣−1, where ∣𝑝(𝑢, 𝑣)∣ represents the number
of nodes in 𝑝(𝑢, 𝑣). All nodes in path 𝑝(𝑢, 𝑣) except 𝑢 and 𝑣
are intermediate nodes. For nodes 𝑢 and 𝑣, there may be more
than one shortest paths with the same number of intermediate
nodes. Thus, the shortest path set between 𝑢 and 𝑣 is defined
as 𝑃 (𝑢, 𝑣) including all shortest paths between 𝑢 and 𝑣. For
example, in Fig. 1, two shortest paths exist between 𝐴 and
𝐸 with 𝐻(𝐴,𝐸) = 2. The first shortest path is 𝑝1(𝐴,𝐸) =
{𝐴,𝐵,𝐸}, and the second one is 𝑝2(𝐴,𝐸) = {𝐴,𝐷,𝐸}, so
the shortest path set 𝑃 (𝐴,𝐸) = {𝑝1(𝐴,𝐸), 𝑝2(𝐴,𝐸)}.

MOC-CDS has all features in CDS. Besides those features,
MOC-CDS has a special constraint. For any two nodes in a
network, there exists at least one shortest path between them,
all of whose intermediate nodes on the path should be included
in MOC-CDS. Thus, MOC-CDS can be formally defined as
follows.

Definition 1 (MOC-CDS). The Minimum Routing Cost Con-
nected Dominating Set problem (MOC-CDS) is to find a
minimum-size node set 𝐷 ⊆ 𝑉 such that

1) ∀ 𝑢 ∈ 𝑉 ∖𝐷, ∃ 𝑣 ∈ 𝐷, such that (𝑢, 𝑣) ∈ 𝐸.
2) The induced graph 𝐺[𝐷] is connected.
3) ∀ 𝑢, 𝑣 ∈ 𝑉 , if 𝐻(𝑢, 𝑣) > 1, then ∃ 𝑝𝑖(𝑢, 𝑣) ∈ 𝑃 (𝑢, 𝑣),

𝑝𝑖(𝑢, 𝑣)∖{𝑢, 𝑣} ⊆ 𝐷.

We do not consider the situation of 𝐻(𝑢, 𝑣) = 1. The reason
is that, our MOC-CDS aims to reduce routing cost. When
we select a MOC-CDS no matter in a centralized way or a
distributed way, neighbors of ∀𝑣 ∈ 𝑉 must be known to 𝑣
during selection process. As a result, when 𝑣 has a packet
destined to 𝑢, 𝑣 will not inform adjacent nodes in MOC-CDS
to help deliver the packet, because 𝑣 knows 𝑢 can receive
packets from 𝑣 directly and no consecutive forwarding will
happen. However, once 𝐻(𝑢, 𝑣) > 1, consecutive forwardings
are needed to deliver packages to the destination node. Thus, a
good selection of forwarding nodes will influence on network
performance greatly. We hope to select a CDS set with
minimum size, but keep the value of 𝐻(𝑢, 𝑣),∀𝑢, 𝑣 ∈ 𝑉
through this CDS the same as that in original graph. It is
the goal of MOC-CDS.

In fact, there exists an equivalent problem to MOC-CDS.
The equivalent problem is named 2-hop Shortest Path Con-

nected Dominating Set (2hop-CDS). We first introduce what
is 2hop-CDS and then we prove that the two problems are
indeed equivalent to each other.

C. 2hop-CDS Problem

2hop-CDS is also a CDS. It requires that, for any two nodes
with distance equal to 2, there exists at least one shortest path
between them, whose intermediate node should be included in
2hop-CDS.

The formal definition is shown in details as follows.

Definition 2 (2hop-CDS). The 2-hop Shortest Path Connected
Dominating Set problem (2hop-CDS) is to find a minimum-size
node set 𝐷

′ ⊆ 𝑉 such that
1) ∀ 𝑢 ∈ 𝑉 ∖𝐷′

, ∃ 𝑣 ∈ 𝐷
′
, such that (𝑢, 𝑣) ∈ 𝐸.

2) The induced graph 𝐺[𝐷
′
] is connected.

3) ∀ 𝑢, 𝑣 ∈ 𝑉 , if 𝐻(𝑢, 𝑣) = 2, then ∃ 𝑝𝑖(𝑢, 𝑣) ∈ 𝑃 (𝑢, 𝑣),
𝑝𝑖(𝑢, 𝑣)∖{𝑢, 𝑣} ⊆ 𝐷

′
.

Next, we will show that the MOC-CDS and 2hop-CDS are
equivalent to each other by Lemma 1.

Lemma 1. A dominating set 𝐷 is a MOC-CDS if and only if
it is a 2hop-CDS.

Proof: (1) If 𝐷 is a MOC-CDS, then for any two nodes
with hop distance of 2, there exists a shortest path all of
whose intermediate nodes belongs to 𝐷. It is trivial that 𝐷
is a minimum size solution for 2hop-CDS. Otherwise if we
eliminate one node 𝑢 from 𝐷, then it is not a MOC-CDS,
which means that 𝐷∖{𝑢} does not satisfy rule 1), 2), or 3) in
Def. 1. Easy to prove that 𝐷∖{𝑢} does not satisfy rule 1), 2),
or 3) in Def. 2 either. Thus, 𝐷 is also a 2hop-CDS.

(2) Conversely, assuming 𝐷 satisfies Def. 2, we show
that 𝐷 also meets Def. 1. Consider a shortest path 𝑝(𝑢, 𝑣) =
{𝑢,𝑤1, 𝑤2, ..., 𝑤𝑘, 𝑣}. Let’s consider odd 𝑘 firstly. According
to Def. 2, there exist 𝑠1, 𝑠3, ..., 𝑠𝑘 ∈ 𝐷 such that {𝑢, 𝑠1, 𝑤2},
{𝑤2, 𝑠3, 𝑤4}, ⋅ ⋅ ⋅ , {𝑤𝑘−1, 𝑠𝑘, 𝑣} are shortest paths. 𝑤𝑖 and
𝑤𝑖+2 are not adjacent to each other, otherwise we can con-
nect 𝑤𝑖 and 𝑤𝑖+2 directly and ∣𝑝(𝑢, 𝑣)∣ will reduce. That
is, 𝑝(𝑢, 𝑣) is not a shortest path between 𝑢 and 𝑣. Let
𝑝′(𝑢, 𝑣) = {𝑢, 𝑠1, 𝑤2, 𝑠3, ..., 𝑤𝑘−1, 𝑠𝑘, 𝑣}, which is also a path
between 𝑢 and 𝑣 (see Fig. 3 as an example). Easy to know that
∣𝑝(𝑢, 𝑣)∣ = ∣𝑝′(𝑢, 𝑣)∣. It means that 𝑝′(𝑢, 𝑣) is also a shortest
path between 𝑢 and 𝑣. In 𝑝′(𝑢, 𝑣), some intermediate nodes
are in 𝐷 while others are not. Next, we will use similar way
to 𝑝′(𝑢, 𝑣) to find a 𝑝′′(𝑢, 𝑣) whose all intermediate nodes in
𝑝′′(𝑢, 𝑣) should belong to 𝐷. According to Def. 2, there also
exist 𝑠2, 𝑠4, ..., 𝑠𝑘−1 ∈ 𝐷 such that {𝑠1, 𝑠2, 𝑠3}, {𝑠3, 𝑠4, 𝑠5},
⋅ ⋅ ⋅, {𝑠𝑘−2, 𝑠𝑘−1, 𝑠𝑘} are shortest paths. According to the
definition of shortest path 𝑝′′(𝑢, 𝑣) = {𝑢, 𝑠1, 𝑠2, ..., 𝑠𝑘, 𝑣} is
a shortest path between 𝑢 and 𝑣 where all intermediate nodes
belong to 𝐷, since ∣𝑝′(𝑢, 𝑣)∣ = ∣𝑝′′(𝑢, 𝑣)∣. When 𝑘 is even,
proof is similar to the situation of odd 𝑘. There exists at least
one shortest path between 𝑢 and 𝑣, having all intermediate
nodes included in 𝐷. Next, we need to show that 𝐷 is
minimum. This is easy to achieve since if we remove a node
𝑢 ∈ 𝐷, 𝐷∖{𝑢} is not a 2hop-CDS, which does not satisfy rule
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Fig. 4. Reduction from Set-Cover to 2hop-CDS (a) Reduction with ∣𝒞∣ > 1.
(b) Reduction with ∣𝒞∣ = 1.

1), 2), or 3) in Def. 2. Thus it cannot satisfy rules in Def. 1,
either. Therefore, we conclude that when 𝐷 meets Def. 2, it
also meets Def. 1.

Based on (1) and (2) above, we get that 2hop-CDS and
MOC-CDS are equivalent to each other.

In fact, finding a 2hop-CDS cannot be done in polynomial
time. Next, we prove that 2hop-CDS in general graph is NP-
hard. It has already been proved that selecting a minimum
Set-Cover is an NP-hard problem [26]. Motivated by this, we
construct a reduction from Set-Cover to 2hop-CDS. We first
clarify the concept of Set-Cover, given in Def. 3. Then, we
will give the proof in Theorem 1.

Definition 3 (Set-Cover). Given a collection 𝒞 of subsets
of a finite set 𝑋 such that

∪
𝐴∈𝒞 𝐴 = 𝑋 , find a minimum

subcollection 𝒜 ⊆ 𝒞 such that
∪

𝐴∈𝒜 𝐴 = 𝑋 .

Theorem 1. Selecting a 2hop-CDS in general graph is NP-
hard.

Proof: We first show that 2hop-CDS∈ 𝑁𝑃 . Given a graph
𝐺 = (𝑉,𝐸) and an integer 𝑘. The certificate we choose is the
2hop-CDS 𝑉 ′ ⊆ 𝑉 . The verification algorithm affirms that
∣𝑉 ′∣ = 𝑘, and then it checks, for each pair of nodes 𝑢, 𝑣 ∈ 𝑉
having 𝐻(𝑢, 𝑣) = 2, ∃𝑤 ∈ 𝑉 ′ and {𝑢,𝑤, 𝑣} is a path between
𝑢 and 𝑣. This verification can be performed straightforwardly
in 𝑂(𝑛2) — polynomial time.

Next, we prove that 2hop-CDS is NP-hard by showing that
Set-Cover≤𝑃 2hop-CDS. It is important to note that Set-Cover
is NP-hard even for the special case of ∣𝒞∣ ≤ ∣𝑋∣ in [26]. Our
following proof is based on the special case.

For each 𝐴 ∈ 𝒞, we create a node 𝑢𝐴 and for each element
𝑥 ∈ 𝑋 , we create a node 𝑣𝑥. In addition, we create two nodes
𝑝 and 𝑞. Connect 𝑝 to every 𝑢𝐴 for ∀𝐴 ∈ 𝒞, connect 𝑞 to every
𝑢𝐴 for ∀𝐴 ∈ 𝒞, and also connect 𝑞 to every 𝑣𝑥 for ∀𝑥 ∈ 𝑋 . If
and only if 𝑥 ∈ 𝐴, an edge between 𝑣𝑥 and 𝑢𝐴 will be added.

The resulting graph is denoted as 𝐺. In Fig. 4 (a), 𝑣𝑥, 𝑣𝑦, 𝑣𝑧
represent elements 𝑥, 𝑦, 𝑧 ∈ 𝑋 respectively, 𝑢𝐴, 𝑢𝐵 represent
elements in 𝐴,𝐵 ∈ 𝒞 respectively. Edge between 𝑣𝑥 and 𝑢𝐴

represents 𝑥 ∈ 𝐴.
We claim that 𝒞 has a Set-Cover solution 𝒜 of size at most

𝑘 if and only if 𝐺 has a dominating set of size at most 𝑘+ 1
satisfying Def. 2.

(1). We first prove when ∣𝒜∣ ≤ 𝑘 then we can obtain a 𝐷
in 𝐺 having ∣𝐷∣ ≤ 𝑘 + 1. Our claim holds trivially in case
of ∣𝒞∣ = 1 as shown in Fig. 4 (b). The reason is that, 𝒜 = 𝒞
since only one element 𝐴 ∈ 𝒞 such that 𝑘 = ∣𝒜∣ = 1. Thus,
a 2hop-CDS in Fig. 4 (b) should be {𝑢𝐴, 𝑞}. The size of the
minimum 2hop-CDS is 2 which is equal to 𝑘 + 1. We next
prove correctness of our claim when ∣𝒞∣ > 1. First, assume 𝒞
has a Set-Cover 𝒜 of size at most 𝑘. Then, it is easy to verify
that 𝐷 = {𝑢𝐴∣𝐴 ∈ 𝒜}

∪{𝑞} is a connected dominating set
of 𝐺 satisfying 2hop-CDS. “Dominating” is because 𝑝 can
be dominated by any node in {𝑢𝐴∣𝐴 ∈ 𝒜}, and any node in
{𝑣𝑥∣𝑥 ∈ 𝑋} or {𝑢𝐴∣𝐴 ∈ 𝒞} is dominated by 𝑞. “Connected”
is because any two nodes in {𝑢𝐴∣𝐴 ∈ 𝒜} can be connected
through 𝑞. 𝑞 is connected to any other node directly. Lastly,
we prove that 𝐷 is a 2hop-CDS. For any pair of nodes 𝑚 and
𝑛 in 𝐺 with 𝐻(𝑚,𝑛) = 2, 𝑝 ∕= 𝑚, and 𝑝 ∕= 𝑛, {𝑚, 𝑞, 𝑛}
must be a shortest path which is obvious in Fig. 4 (a). For
a pair of nodes 𝑝 and 𝑚 with 𝐻(𝑝,𝑚) = 2, 𝑚 must belong
to {𝑣𝑥∣𝑥 ∈ 𝑋}∪{𝑞}. If 𝑚 ∈ {𝑣𝑥∣𝑥 ∈ 𝑋}, then there must
exist 𝐴 ∈ 𝒜 having 𝑚 ∈ 𝐴. Thus, an edge between 𝑚 and
𝑢𝐴 should be in 𝐺. Therefore, path {𝑚,𝑢𝐴, 𝑝} should be in
𝐺 which is also a shortest path between 𝑚 and 𝑝. (Existence
of 𝐴 can be proved by contradiction. If no such 𝐴 ∈ 𝒜 exists,
then 𝑋 ∕= ∪

𝐴∈𝒜(𝐴) which means subcollection 𝒜 is not Set-
Cover. Contradiction happens.) If 𝑚 = 𝑞, then for any 𝐴 ∈ 𝒜,
(𝑝, 𝑢𝐴,𝑚) is a shortest path. Thus, 𝐷 = {𝑢𝐴∣𝐴 ∈ 𝒜}

∪{𝑞}
is a 2hop-CDS with ∣𝐷∣ ≤ 𝑘 + 1.

(2). Conversely, suppose that 𝐺 has a 2hop-CDS 𝐷 of size
at most 𝑘 + 1, then its corresponding Set-Cover problem has
∣𝒜∣ ≤ 𝑘. Note that distance between 𝑝 to ∀𝑣 ∈ {𝑣𝑥∣𝑥 ∈ 𝑋}
is 2 and every shortest path from 𝑝 to 𝑣 must pass a node 𝑢𝐴

for some 𝐴 ∈ 𝒞. Therefore, 𝒜 = {𝐴∣𝑢𝐴 ∈ 𝐷 and 𝐴 ∈ 𝒞} is
a Set-Cover. For 𝐴,𝐵 ∈ 𝒞 with 𝐴 ∕= 𝐵, distance between 𝑢𝐴

and 𝑢𝐵 is 2 and for every shortest path between 𝑢𝐴 and 𝑢𝐵 ,
but the intermediate node is not in {𝑢𝐸 ∣𝐸 ∈ 𝒞}. This means
that there exists a node in 𝐷, but not in {𝑢𝐸 ∣𝐸 ∈ 𝒜}. Hence,
∣𝒜∣ ≤ 𝑘.

In summary, 2hop-CDS is NP-hard. Based on Lemma 1,
MOC-CDS is NP-hard as well.

IV. ALGORITHM DESCRIPTION

In this paper, we study networks in which nodes may have
different transmission ranges. In a homogeneous network, if
one node 𝑣 receives messages from node 𝑤, 𝑣 can determine
that 𝑤 is its neighbor and 𝑤 can receive messages from 𝑣.
However, in our networks, 𝑣 receives messages from 𝑤 does
not mean 𝑤 can receive messages from 𝑣. Only when two
nodes can receive each other’s messages, the two nodes can
be neighbors. To maintain 1-hop neighbor information for



every node, 2-round “Hello” message is needed. After 1-hop
information is collected, one more round of “Hello” message is
needed to construct 2-hop inforamtion. Before introducing our
algorithm, we first show how to maintain neighbor information
as follows.

A. Neighbor Information Maintenance

𝑁𝑖𝑛(𝑣) is used to denote the set of nodes from which node
𝑣 can receive messages. In contrast, 𝑁𝑜𝑢𝑡(𝑣) denote the set
of nodes which can receive messages from 𝑣, and 𝑁(𝑣) =
𝑁𝑖𝑛(𝑣)∩𝑁𝑜𝑢𝑡(𝑣). At the beginning, every node knows nothing
of others. Each node 𝑣 sends periodical “Hello” messages
out. “Hello” message is piggybacked with 𝑣’s id, 𝑁𝑖𝑛(𝑣),
and 𝑁𝑜𝑢𝑡(𝑣). At first, 𝑁𝑖𝑛(𝑣) and 𝑁𝑜𝑢𝑡(𝑣) are empty. 𝑣 can
construct its 𝑁𝑖𝑛(𝑣). In the following round, by exchanging
non-empty 𝑁𝑖𝑛(𝑣), if 𝑣 receives 𝑁𝑖𝑛(𝑤) and 𝑣 ∈ 𝑁𝑖𝑛(𝑤),
then add 𝑤 to 𝑁𝑜𝑢𝑡(𝑣). Once we collect 𝑁𝑖𝑛(𝑣) and 𝑁𝑜𝑢𝑡(𝑣),
𝑁(𝑣) can be obtained trivially.

Technically, 𝑁2(𝑣) = 𝑁(𝑣)
∪∪𝑢∈𝑁(𝑣)𝑁(𝑢). According to

𝑁2(𝑣), 𝑣 can decide whether two nodes 𝑢 and 𝑤 in 𝑁(𝑣) have
a link (𝑢,𝑤). In the last round, 2-hop neighbor information
can be collected based on 1-hop neighbor information which
has already been collected. In this round, if 𝑣 receives 𝑁(𝑤),
then 𝑣 adds {𝑢∣𝑢 ∈ 𝑁(𝑤) ∧ 𝑢 /∈ 𝑁(𝑣)} to 𝑁2(𝑣).

Finally, we can collect 1-hop and 2-hop neighbor informa-
tion for all nodes in a network.

B. FlagContest

The reason we introduce 2hop-CDS is because 2hop-CDS
only considers shortest paths with length of 2, so that we
can design an algorithm based on local information. On the
contrary, in MOC-CDS, the whole topology may be needed
to find a shortest path between some two nodes. As a result,
it is difficult to find an efficient distributed algorithm for
MOC-CDS. Fortunately, we find an equivalent problem 2hop-
CDS which can be solved in localized way, then the localized
solution also applies to MOC-CDS.

The basic idea of FlagContest is a greedy strategy. Each
node 𝑣 has to fight with its neighbors for a “flag”. According
to the 2-hop neighbor information of 𝑣, 𝑣 can compute the
times it can act as an intermediate node of other two nodes 𝑢
and 𝑤 where 𝐻(𝑢,𝑤) = 2, denoted as 𝑓(𝑣). 𝑣 will send flag to
the node with highest 𝑓(𝑢), where 𝑢 ∈ 𝑁(𝑣)∪{𝑣}. When and
only when one node collect all flags from its neighbors, then it
will be selected as a node in 2hop-CDS. Therefore, we name
this algorithm FlagContest. Flag contests only happen among
neighbors. Therefore, FlagContest is distributed since each
node can make decision only based on its 2-hop neighborhood
information.

Before introducing FlagContest, we first introduce some
definitions used in the algorithm. For a given graph 𝐺 =
(𝑉,𝐸), assign each node 𝑣 a unique id, denoted as 𝑖𝑑(𝑣).
𝑖𝑑 is used for pruning redundant tie in Step 2. Each node
𝑣 has a storage 𝑃 (𝑣). Initially, 𝑃 (𝑣) = {(𝑢,𝑤)∣𝑢,𝑤 ∈
𝑁(𝑣) and 𝐻(𝑢,𝑤) = 2}. Algorithm will stop when 𝑃 (𝑣) =
𝜙, ∀𝑣 ∈ 𝑉 . The algorithm description is given in Alg. 1.
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Fig. 5. (a) Illustration of forwarding. (b) Proof of correctness of FlagContest.

Algorithm 1 distributed Selection of MOC-CDS & 2hop-
CDS (FlagContest)

Step 1. Each node 𝑣 with nonempty 𝑃 (𝑣), calculates 𝑓(𝑣) =
∣𝑃 (𝑣)∣ and sends 𝑓(𝑣) to its neighbors;

Step 2. Each node 𝑣 computes maximum value 𝑚 among re-
ceived 𝑓(𝑢)’s from its neighbors in Step 1 (including
itself). Choose a neighbor 𝑢 with ∣𝑓(𝑢)∣ = 𝑚 and
send a flag to 𝑢. If there are more than one such 𝑢,
then break tie by choosing the one with highest id;

Step 3. If a node 𝑣 receives flags from all its neighbors,
then change color to black and send 𝑃 (𝑣) to all of
its neighbors. Lastly, set 𝑃 (𝑣) = 𝜙;

Step 4. If a node 𝑢 receives 𝑃 (𝑣) from some neighbor 𝑣,
then pass 𝑃 (𝑣) to all neighbors of 𝑢;

Step 5. If a node 𝑢 receives 𝑃 (𝑣) from a neighbor 𝑤 in Step
4, then compute union 𝑈 of such 𝑃 (𝑣)′𝑠 and update
𝑃 (𝑢) by setting 𝑃 (𝑢)← 𝑃 (𝑢)− 𝑈 .

At the end of algorithm, output the set of all black nodes
which is a 2hop-CDS, also a MOC-CDS.

According to Alg. 1, if 𝑣 is selected as a node in MOC-
CDS, then only those nodes in 𝑁(𝑣)

∪{𝑣} need to send out
𝑃 (𝑣) to their neighbors. That is, when and only when a node
𝑢 receives 𝑃 (𝑣) directly from 𝑣, 𝑢 needs to forward 𝑃 (𝑣) to
others. For example, in Fig. 5 (a), suppose 𝑣 will be selected
as black, then 𝑃 (𝑣) = {(𝑢,𝑤), (𝑤, 𝑡)} will be sent out from 𝑣.
When 𝑤 receives 𝑃 (𝑣), it will forward 𝑃 (𝑣) to its neighbors.
However, since 𝑥 cannot receive 𝑃 (𝑣) directly from 𝑣, 𝑥 does
not need to forward 𝑃 (𝑣). The reason is that, there are two
kinds of neighbors of 𝑥. One is the neighbors which are also
𝑣’s neighbors (e.g. in Fig. 5 (a), 𝑡 is a neighbor of 𝑣 and is also
a neighbor of 𝑥). The situation change of 𝑣 will directly affect
such kind of neighbors once 𝑣 sends 𝑃 (𝑣) to them. The other
one is the neighbors which do not contain any pair of nodes in
𝑃 (𝑣) in their “𝑃 ” sets, that is 𝑃 (𝑣)

∩
𝑃 (neighbor of 𝑥) = 𝜙,

referring to 𝑧 in Fig. 5 (a). 𝑃 (𝑧) = {(𝑠, 𝑥)}∩𝑃 (𝑣) = 𝜙. No
action will be taken in 𝑧’s view, even though it receives 𝑃 (𝑣).
This means the situation change of 𝑣 will not affect this kind
of neighbors. Therefore, forwarding of 𝑃 (𝑣) at 𝑥’s view will
be useless.

Fig. 6 shows a large scale example in a 9×8 area. 20 nodes
are deployed in the area. Transmission range may vary from
node to node. Dark nodes, as shown in the figure represent
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Fig. 6. An example of MOC-CDS by FlagContest.

a MOC-CDS obtained by FlagContest. In the resultant graph,
there are 9 members in the selected MOC-CDS. In the first
round, every node 𝑣 calculates 𝑓(𝑣), and send 𝑓(𝑣) to its
neighbors. For example, when node 2 receives all “𝑓” values
from its neighbors, it finds that node 5 has the biggest “𝑓”, so it
sends a flag to node 5. Similarly, node 0, 6, 7, and 16 also send
flags to node 5 because node 5 has the biggest “𝑓” from their
viewpoints. After node 5 collects flags from all its neighbors,
it will be colored as black, according to Step 3 in Alg. 1. Using
the same strategy, we find that node 14 will also be colored as
black in the first round. Then, 𝑃 (5) = {(0, 2), (0, 6), (0, 7),
(0, 16), (2, 6), (2, 16), (6, 16), (7, 16)} and 𝑃 (14) = {(8, 9),
(8, 10), (8, 19), (9, 10), (9, 19), (10, 19)} will be sent to their
neighbors respectively. After this, 𝑃 (5) and 𝑃 (14) will be set
as empty. Nodes 0, 2, 6, 7, and 16 will forward 𝑃 (5) they
receive to their neighbors while nodes 8, 9, 10, and 19 will
forward 𝑃 (14) to their neighbors. Here, we use node 7 as an
example to show how nodes update their set “𝑃 ”. When node
7 receives 𝑃 (5), it will recalculate 𝑃 (7). Originally, 𝑃 (7) =
{(2, 6)}, which is included in 𝑃 (5), so we will delete (2, 6)
from 𝑃 (7). Finally, 𝑃 (7) = ∅. All nodes receive 𝑃 (5) or
𝑃 (14) will update their set “𝑃 ”s like node 7. Till now, the
first round is done. Since not all nodes’ set “𝑃 ”s are empty,
the following rounds will continue till all “𝑃 ”s are empty.

V. THEORETICAL ANALYSIS

In this section, we will prove the correctness and calcu-
late the approximation ratio of FlagContest algorithm. We
also prove that the approximation ratio of MOC-CDS cannot
achieve 𝜌𝑙𝑛𝛿 unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)), where 𝜌
is an arbitrary positive number (𝜌 < 1) and 𝛿 is the maximum
node degree in network. Firstly, we will prove that all black
nodes colored by Alg. 1 construct an MOC-CDS.

Theorem 2. Given a graph 𝐺 = (𝑉,𝐸), FlagContest will
select a node set 𝑉 ′ satisfying three rules in Def. 2.

Proof: This proof uses method of contradiction based on
the fact that Alg. 1 stops normally when 𝑃 (𝑣) = 𝜙, ∀𝑣 ∈ 𝑉 .

Firstly, we prove that all nodes outside 𝑉 ′, as white nodes
shown in Fig. 5 (b), can be dominated by nodes in 𝑉 ′. On the

contrary, assume 𝑣 is not dominated by 𝑉 ′, then 𝐻(𝑣, 𝑢) ≥
2,∀𝑢 ∈ 𝑉 ′. Find a nearest 𝑢 to 𝑣 from 𝑉 ′. Choose a 𝑝(𝑣, 𝑢) =
{𝑣, 𝑤1, ..., 𝑤𝑘, 𝑢} ∈ 𝑃 (𝑣, 𝑢). Since 𝐻(𝑣, 𝑢) ≥ 2, there exist at
least one 𝑤1, such that 𝑤1 ∕= 𝑣, and 𝑤1 ∕= 𝑢. Thus, we have
(𝑣, 𝑤2) ∈ 𝑃 (𝑤1), or (𝑣, 𝑢) ∈ 𝑃 (𝑤1), which means 𝑃 (𝑤1) ∕=
∅. This contradicts to 𝑃 (𝑣) = 𝜙, ∀𝑣 ∈ 𝑉 . Therefore, 𝑉 ′

should be a dominate set.
Next, we prove that 𝐺[𝑉 ′] is connected. Similarly, assume

𝐺[𝑉 ′] is not connected. Denote every connected compo-
nents in 𝑉 ′ as 𝐶𝑖. Find one pair of disconnected nodes
in 𝐺[𝑉 ′] as 𝑥 ∈ 𝐶𝑖 and 𝑦 ∈ 𝐶𝑗 (𝑖 ∕= 𝑗), such that
the distance between 𝑥 and 𝑦 are the shortest among all
pairs of connected components in 𝐺[𝑉 ′]. Then choose one
𝑝(𝑥, 𝑦) = {𝑥,𝑤′

1, ..., 𝑤
′
𝑘, 𝑦} ∈ 𝑃 (𝑥, 𝑦), we have 𝑤′

𝑖 ∈ 𝑉 ∖𝑉 ′

(1 ≤ 𝑖 ≤ 𝑘), shown in Fig. 5 (b). Similarly, there exists at
least one 𝑤′

1, such that 𝑤′
1 ∕= 𝑥, and 𝑤′

1 ∕= 𝑦. Now we have
(𝑥,𝑤′

2) ∈ 𝑃 (𝑤′
1) or (𝑥, 𝑦) ∈ 𝑃 (𝑤′

1), otherwise 𝑥 and 𝑤′
2 will

connect directly, which means 𝑝(𝑥, 𝑦) is not a shortest path.
Or 𝑥 and 𝑦 will connect directly. However, now 𝑃 (𝑤′

1) ∕= ∅,
which violates the strategy of FlagContest. Therefore, 𝐺[𝑉 ′]
should be connected.

Lastly, we check whether every pair of nodes with distance
2 having at least one intermediate node colored black. If two
nodes 𝑢, 𝑣 ∈ 𝑉 having 𝐻(𝑢, 𝑣) = 2 and no intermediate node
𝑤 of any path between 𝑢 and 𝑣 belongs to 𝑉 ′, then 𝑃 (𝑤)
should not be empty. This contradicts to 𝑃 (𝑣) = 𝜙, ∀𝑣 ∈ 𝑉 .

Therefore, 𝑉 ′ selected by FlagContest satisfies three rules
in Def. 2.

In [26], Feige proved that for Set-Cover problem, there does
not exist a polynomial-time approximation with performance
ratio 𝜌 ln𝑛, where ∀𝜌 < 1 and 𝑛 is number of elements in
𝒞, unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)). Based on [26],we
show that there exists a lower bound that no polynomial time
algorithm can achieve for MOC-CDS in Theorem 3.

Theorem 3. Neither MOC-CDS nor 2hop-CDS has
polynomial-time approximation with performance ratio 𝜌 ln 𝛿
where ∀𝜌 < 1 and 𝛿 is the maximum node degree of input
graph, unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)), for sufficient
large 𝑛 and 𝑜𝑝𝑡𝒜.

Proof: Based on proof of Theorem 1, an immediate
corollary of our claim is that optimal Set-Cover 𝒜 contained
in 𝒞 has size 𝑜𝑝𝑡𝒜 if and only if optimal MOC-CDS 𝐷 of
corresponding 𝐺 has size of 𝑜𝑝𝑡𝐷 = 𝑜𝑝𝑡𝒜 + 1. We next
use contradiction method to prove that MOC-CDS cannot
have approximation algorithm with a performance ratio of
𝜌 ln 𝛿, ∀𝜌 < 1.

Assume 𝐺 has a polynomial-time approximation solution
𝐷′ for 2hop-CDS with size at most (𝜌 ln 𝛿)(𝑜𝑝𝑡𝐷) for some
constant 𝜌 < 1. The solution and ratio can also be applied
to MOC-CDS. Note that we assume in Fig. 4, ∣𝒞∣ ≤ 𝑛
where 𝑛 = ∣𝑋∣, and node 𝑞 has the biggest degree in 𝐺
obviously. Thus, 𝛿 = ∣𝒞∣ + ∣𝑋∣ ≤ 2𝑛. Based on Theorem
1’s proof, when MOC-CDS in 𝐺 has a solution with size of
𝑘 at most, corresponding Set-Cover problem should have a
solution with size of 𝑘 − 1. Thus, we can find a polynomial-



time approximation solution for Set-Cover with size at most
(𝜌 ln 𝛿)(𝑜𝑝𝑡𝐷)− 1 < (𝜌 ln 2𝑛)(𝑜𝑝𝑡𝒜 + 1) < 0.5(𝜌+ 1) ln𝑛×
𝑜𝑝𝑡𝒜 for sufficiently large 𝑛 and sufficiently large 𝑜𝑝𝑡𝒜. (Note:
for any constant 𝛼, we can check in polynomial-time whether
𝑜𝑝𝑡𝐷 ≤ 𝛼 and if it is true, 𝑜𝑝𝑡𝒜 can be determined at the
same time.) This implies that 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛))
which has proved to be wrong. Therefore, assumption 𝐺 has a
polynomial-time approximation solution 𝐷 with size at most
(𝜌 ln 𝛿)(𝑜𝑝𝑡𝐷) for some constant 𝜌 < 1 is incorrect. All in all,
Theorem 3 is proved.

We reduce Set-Cover problem to 2hop-CDS to prove a
lower bound of MOC-CDS problem. Next, we will show there
exists a polynomial time approximation with an upper bound
performance ratio of MOC-CDS problem by converting 2hop-
CDS to hitting set problem. If we can prove this upper bound
of 2hop-CDS, then this upper bound is also applied to MOC-
CDS.

Theorem 4. A polynomial time approximation algorithm can
be designed for 2hop-CDS with performance ratio of (1 −
ln 2)+2 ln 𝛿 at most, where 𝛿 is the maximum node degree of
input graph.

Proof: For each pair of nodes (𝑢, 𝑣) with distance 2,
define 𝑚(𝑢, 𝑣) = {𝑤∣{𝑢,𝑤, 𝑣} 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ}. Now, finding a
minimum 2hop-CDS problem becomes finding a minimum
hitting set [27], in 𝑈 = {∪𝑚(𝑢, 𝑣)∣𝑢, 𝑣 ∈ 𝑉 }. That means if
we can find a minimum hitting set for a 𝑚(𝑢, 𝑣), the minimum
hitting set is also a minimum solution to 2hop-CDS and MOC-
CDS. In [27], the author proposed a greedy algorithm for
finding a minimum hitting set with the performance ratio
of 1 + ln 𝛾 at most, where 𝛾 is the maximum number of
𝑚(𝑢, 𝑣)’s that a node can appear. In addition, by deducing
2hop-CDS to hitting set problem, we have 𝛾 ≤ 𝛿(𝛿 − 1)/2.
As a result, 1 + ln 𝛾 ≤ (1 − ln 2) + 2 ln 𝛿. Therefore,
there exists a ploynomial time approximation algorithm for
selecting a minimum MOC-CDS with performance ratio of
(1− ln 2) + 2 ln 𝛿 at most.

Next, we need to prove Alg. 1 has the same bound.

Theorem 5. Alg. 1 (FlagContest) produces approximation
solution with performance ratio 𝐻((𝛿2)), where 𝐻 is the
Hamonic function and 𝛿 is the maximum node degree of input
graph.

Proof: Let 𝑃0(𝑣) be the initial 𝑃 (𝑣) and 𝑋 =∪
𝑣∈𝑉 𝑃0(𝑣). Then problem of Def. 2 is equivalent to Set-

Cover problem with base set 𝑋 and collection 𝒞 = {𝑃0(𝑣)∣𝑣 ∈
𝑉 }. Suppose 𝐷∗ gives the minimum solution {𝑃0(𝑣)∣𝑣 ∈ 𝐷∗}
to the Set-Cover problem of 𝑋 and 𝒞. We partition 𝑋 into
subsets 𝑋(𝑣) for 𝑣 ∈ 𝐷∗ such that ∀𝑋(𝑣), 𝑋(𝑣) ⊆ 𝑃0(𝑣).

Consider 𝑣 ∈ 𝐷∗. Denote 𝑓0 = 𝑋(𝑣) before the first
round. We will make a charge to (𝑢,𝑤) ∈ 𝑋(𝑣) when (𝑢,𝑤)
is removed from 𝑃 (𝑣) during the computation of distributed
algorithm. When 𝑢 is colored in black, we charge 1/𝑓(𝑢) to
∀(𝑤, 𝑦) ∈ 𝑃 (𝑢).

Suppose that at the end of Step. 5 in Alg. 1 in the first round,
𝑓0 − 𝑓1 elements of 𝑋(𝑣) are charged. Then ∀(𝑢,𝑤) ∈ 𝑋(𝑣)
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Fig. 7. Illustration of Bound of size of MOC-CDS in General Networks.
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Fig. 8. Comparison of Average Routing Path Length and Maximum Routing
Path Length in DG Networks between FlagContest and TSA.

is charged by the value at most 1/𝑓0. The total charge for
those 𝑓0 − 𝑓1 removed elements is at most (𝑓0 − 𝑓1)/𝑓0.

Similarly, let 𝑓𝑖 be the number of uncharged elements in
𝑋(𝑣) at the end of Step 5 in the 𝑖th round. Then the total
charge to elements of 𝑋(𝑣) is at most (𝑓𝑖−1 − 𝑓𝑖)/𝑓𝑖.

Suppose 𝑓𝑘 = 0. Then all elements of 𝑋(𝑣) are charged at
total value as follows:

𝑘−1∑
𝑖=0

𝑓𝑖 − 𝑓𝑖+1

𝑓𝑖
≤

𝑓0∑
𝑖=1

1

𝑖
= 𝐻(𝑓0) ≤ 𝐻((𝛿2)) (1)

Note that when a node 𝑣 is colored in black, the total value of
charging to 𝑃 (𝑣) is one. Therefore, the total value charging
to elements of 𝑋 is exactly the number of black nodes at
the end of distributed algorithm. This number is bounded by
𝐻((𝛿2))× ∣𝐷∗∣.

VI. SIMULATION

This part includes two subparts. The first one evaluates
whether the size of MOC-CDS obtained from FlagContest is
under the upper bound we have already proved. The second
one evaluates FlagContest by comparing MOC-CDS with
traditional CDS without shortest path constraint. We compare
them in terms of Maximum Routing Path Length (MRPL) and
Average Routing Path Length (ARPL). In the simulations, if
node 𝑠 in a network has a package to 𝑑, 𝑠 will send the package
to its adjacent nodes in the CDS, and a shortest path in the
CDS will be chosen to forward the package to 𝑑’s adjacent
nodes in CDS, that is, forwarding is done within CDS. MRPL
is defined as the maximum routing path length in the network,
while ARPL is defined as the average length of routing paths
in the network.
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Fig. 9. Comparison of Maximum Routing Path Length among CDS-BD-D, SAUM06, ZJH06, and FlagContest in UDG Networks.
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Fig. 10. Comparison of Average Routing Path Length among CDS-BD-D, SAUM06, ZJH06, and FlagContest in UDG Networks.

A. Simulation Environment

To evaluate FlagContest, we test three types of networks.
The first type is a network in which nodes may have different
transmission ranges and obstacles may obstruct communica-
tions among nodes. This type is named General Network
because this type can be modeled as a general graph. In
General Networks, we show that FlagContest is under the
upper bound we have proved above. The second type is a
network in which different transmission ranges are allowed,
however, obstacles are not considered. The second type is
named DG Network since this type can be modeled as a disk
graph. In DG Network, we will compare FlagContest with
TSA [7]. The last one is an ideal one in which all nodes
should have the same transmission ranges and no obstacle
exists. This one is named UDG Network because it can be
modeled as a unit disk graph. In UDG Network, FlagContest
will be compared with CDS-BD-D [6], FKMS06 [28], and
ZJH06 [29].

1) General Network: To simulate network of this cate-
gory, 𝑛 nodes are randomly deployed to a fixed area of
100𝑚 × 100𝑚. Since we have to use brute-force search, we
can only get optimal solution when network size is limited
(𝑛 = 20 or 𝑛 = 30). For a certain 𝑛, the maximum degree
of a network can vary from 1 to 𝑛 − 1. Here, once we fix a
certain 𝑛 and a maximum degree, we generate 100 instances.
Nodes are assigned a transmission range randomly. Definitely,
we have to generate a connected network as our input. We
take the average value among 100 instances as our results.

2) DG Network: To simulate networks of this category, 𝑛
nodes are randomly deployed to a fixed area of 800𝑚 × 800𝑚.
𝑛 varies from 10 to 120 with increment of 10. Each node 𝑣
is randomly assigned a transmission range 𝑟 ∈ [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥],

where 𝑟𝑚𝑖𝑛 = 200𝑚 and 𝑟𝑚𝑎𝑥 = 600𝑚. For each value of 𝑛,
1000 network instances are investigated. Results of the same
𝑛 are averaged among 1000 instances.

3) UDG Network: To simulate network of this category, 𝑛
nodes are deployed randomly in a fixed area of 100𝑚 × 100𝑚
and all nodes have the same transmission range. 𝑛 is in-
cremented from 10 to 100 by 10, while transmission range
varies among 15𝑚, 20𝑚, 25𝑚, and 30𝑚. For a certain 𝑛 and
transmission range, 100 instances are generated. Results are
averaged among 100 instances.

B. Simulation Results

Fig. 7 shows that the size of MOC-CDS selected by
FlagContest is significantly less than the upper bound and
very close to that of the optimal solution. Note the bigger
the maximum degree is, the smaller size of MOC-CDS is. The
reason is that a node with bigger degree can be an intermediate
node of more shortest paths between pairs of nodes, which can
reduce the size of CDS greatly.

Fig. 8 shows that the MRPL and the ARPL of FlagContest
are smaller than those of TSA. This illustrates that our
FlagContest can also work well in DG Network. From this
figure, the ARPL of FlagContest is about 12.5% less than
that of TSA while the MRPL of FlagContest is about 20%
less than that of TSA. TSA tends to include nodes with larger
transmission range in CDS. However, large transmission range
does not necessarily mean big node degree which is a selection
criteria of FlagContest.

Fig. 9 and Fig. 10 show that FlagContest is also efficient in
UDG Networks. As shown in Fig. 9 and Fig. 10, the MRPL
of FlagContest is about 20%-40% better and the ARPL of
FlagContest is around 10%-30% better, when the number of
nodes exceeds 30. Note ARPL and MRPL increase firstly and



then decrease. The reason is that in a connected network with
small size of nodes, the routing path length is more likely to
increase when a new node is added. For example, a network
with 1 node inside has ARPL equal to 0. When a new node is
connected to the network, both ARPL and MRPL will increase
to 1. Hence, routing path length increases when 𝑛 increases (𝑛
is relatively small). However, when 𝑛 exceeds a certain value,
newly added nodes are more likely to make distance between
nodes smaller and the network more connected (considering
physical space is fixed). That’s why there is a decrease when
network size becomes big enough. In addition, when transmis-
sion range increases, networks are more connected considering
physical space is fixed. It is trivial to conclude that routing
path will decrease when transmission range increases, which
explains both MRPL and ARPL decrease while transmission
range increases as shown in Fig. 9 and Fig. 10.

VII. CONCLUSION

In this paper, we propose a minimum routing cost con-
nected dominating set (MOC-CDS). MOC-CDS aims to find
a minimum CDS while assuring that any routing path through
this CDS is shortest in networks. It is proved that selecting
a minimum MOC-CDS is NP-hard. A lower bound of ap-
proximation ratio of MOC-CDS is proved in this paper. We
also propose an efficient distributed algorithm for constructing
MOC-CDS with performance ratio 1− ln 2 + 2 ln 𝛿, where 𝛿
is the maximum node degree in the network. Compared with
traditional CDS, using a MOC-CDS as a virtual backbone
in wireless networks can reduce routing cost significantly.
Our future work includes further study of FlagContest by
doing simulations in more realistic simulation environments
like NS2.
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