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Abstract—Influence Maximization is the problem of finding
a certain amount of people in a social network such that their
aggregation influence through the network is maximized. In
the past this problem has been widely studied under a number
of different models. In 2003, Kempe et al. gave a (1 − 1

e
)-

approximation algorithm for the linear threshold model and the
independent cascade model, which are the two main models in
the social network analysis. In addition, Chen et al. proved that
the problem of exactly computing the influence given a seed set
in the two models is #P-hard. Both the linear threshold model
and the independent cascade model are based on randomized
propagation. However such information might be obtained
by surveys or data mining techniques, which makes great
difference on the properties of the problem. In this paper, we
study the Influence Maximization problem in the deterministic
linear threshold model. As a contrast, we show that in the
deterministic linear threshold model, there is no polynomial time
n1−ε-approximation unless P=NP even at the simple case that
one person needs at most two active neighbors to become active.
This inapproximability result is derived with self-contained
proofs without using PCP theorem. In the case that a person
can be activated when one of its neighbors become active, there
is a polynomial time e

e−1
-approximation, and we prove it is the

best possible approximation under a reasonable assumption in
the complexity theory, NP 6⊂ DTIME(nlog log n). We also
show that the exact computation of the final influence given a
seed set can be solved in linear time in the deterministic linear
threshold model. The Least Seed Set problem, which aims to
find a seed set with least number of people to activate all the
required people in a given social network, is discussed. Using
an analysis framework based on Set Cover, we show a O(logn)-
approximation in the case that a people become active when
one of its neighbors is activated.

Keywords-influence maximization; social network; approxi-
mation; deterministic model;

I. INTRODUCTION

A social network is a graph of relationships (edges) and
individuals (nodes). One of the issues usually considered
by marketing managers in this field is how to maximize
the spread of information through a social network. For

instance, in order to promote a new product, one can give a
few influential people free samples of the product. Probably
those people will recommend the product to their friends and
many individuals will ultimately try it through such “word-
of-mouth” effect. The Influence Maximization (IM) problem
is how to select the “few” initial people as seed set, such
that the spread of influence can be maximized. In order to
study the complexity of the this problem, we first have to
get about another problem, that is how to compute the total
influence given a seed set. Please see [1], [2], [9] for recent
works.

The node selection problem we just mentioned was first
proposed by Domingos and Richardson in [4] and [8]
respectively. They considered the relations of individuals
and proposed a probabilistic propagation model for this
problem. Kempe et al. in [6], [7] further formulated it into an
optimization problem and studied it on two different models:
the independent cascade model proposed by Goldenberg et
al. in [5], [12] and the linear threshold model proposed
by Granovetter and Schelling in [10] and [11] separately.
Kempe et al. proved the natural greedy algorithm achieves a
(1− 1

e )-approximation simply by showing that the influence
spreads under both the two models are submodular. There-
after, Chen et al. in [1], [2] showed that the problem of
exactly computing the influence given a seed set in both the
independent cascade model and the linear threshold model
are #P-hard, which indicates that the greedy algorithm is
not a polynomial time approximation for the two models.

In the independent cascade model, the propagation pro-
cedure is based on a probabilistic way; individuals can suc-
cessfully activate their neighbors with certain probabilities.
In the linear threshold model, the propagation procedure is
in a threshold manner; the influence from an individual vi

to another individual vj is presented by a weight wi,j and
an individual can be activated when the sum of influences
it receives exceeds a randomly determined threshold. It is

2011 31st International Conference on Distributed Computing Systems Workshops

1545-0678/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCSW.2011.33

164

2011 31st International Conference on Distributed Computing Systems Workshops

1545-0678/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCSW.2011.33

160



worthy to mention that the thresholds in the linear threshold
model are randomly updated during the spread process.
Therefore, it can be seen that both the linear threshold model
and the independent cascade model are based on randomized
propagation. However the thresholds might be estimated by
surveys and data mining techniques. If an individual can
be activated when the sum of influences exceeds a pre-
determined threshold, we say the propagation procedure is
based on the deterministic linear threshold model. In this
paper, we focus on studying the approximation and inap-
proximation for the Influence Maximization problem in the
deterministic linear threshold model. The main contribution
of this paper includes:

1) We show that in the deterministic linear threshold
model, there is no polynomial time n1−ε-approximation for
the IM problem unless P=NP even in the simple case that a
person needs at most two active neighbors to become active.
2) We also show that the problem of exactly computing the
influence given a seed set in this model can be solved in
linear time. 3) In the case that a person can be activated after
one of its neighbors becomes active, there is a polynomial
time e

e−1 -approximation. 4) The Least Seed Set (LSS) prob-
lem, which is a variation of the IM problem, is discussed. It
aims at finding a seed set with least number of people such
that all the people of interest in the social network can be
finally activated. We give a O(logn)-approximation for the
case that a node can be activated by anyone of its neighbors.

The rest of this paper is organized as follows. In section
II, we present a linear time exact algorithm to compute the
influence spread for a seed set. In section III, we study the
IM problem in the case that a people can be activated by
anyone of its neighbors. An inapproximation result for the
case that a person needs two active neighbors to become
active is provided in section IV. In section V, we show the
approximation and inapproximation for a special case of the
LSS problem. In section VI, we conclude our paper and
discuss the future work.

II. COMPUTING THE INFLUENCE SPREAD IN THE
DETERMINISTIC LINEAR THRESHOLD MODEL

For the linear threshold model and the independent cas-
caded model, the problem of computing the influence spread
given a seed set was left as an open problem in [6]. Chen
et al. closed this open problem by showing its #P-hardness
in [1], [2].

Definition 1. A social network is a directed graph G(V,E),
each node vi in V with a threshold ti represents a person
in the social network, each directed edge (vi, vj) has weight
wi,j that denotes how much the node vj is influenced by the
node vi.

In the deterministic linear threshold model, the propaga-
tion process has the following provisions:

1) Let xj = 1 denote vj is active, and xj = 0 denote vj

is not.
2) At any time, vi becomes active if and only if∑
vj∈neighour(vi)

(xj · wj,i) ≥ ti.
3) The diffusion is a step by step process: in step t, all

nodes that were active in step t− 1 remain active, and any
node v satisfies the active condition will be activated.

Definition 2. Given a social network G(V,E) and a seed
set A of initially active nodes, the Influence Computation
problem is to find all the nodes that will be activated directly
or indirectly by the nodes in A.

In the next, we show that this problem in the deterministic
linear threshold model can be solved in linear time.

A. A Linear Time Algorithm

Theorem 1. Given a social network G(V,E) and a seed set
A, the problem of exactly computing the influence spread can
be solved in linear time in the deterministic linear threshold
model.

Algorithm 1 Influence Computing
1: Input: A directed graph G(V,E), a threshold ti for each

node vi ∈ V , a weight wi,j for each edge (vi, vj) ∈ E
and a seed set A ⊆ V .

2: Output: the set of all nodes that will be activated in the
network.

3: For each node vi in V , let Hi ← 0; (Hi holds the sum
of influences for vi.)

4: Mark all the nodes in A as newly activated nodes;
5: repeat
6: for Each newly activated node vj do
7: for Each its non active neighbor vk do
8: Let Hk ← Hk + wj,k;
9: if Hk ≥ tk then

10: Mark vk as newly activated;
11: end if
12: Mark vj as active node; (Note that active node

6= newly activated node.)
13: end for
14: end for
15: until There is no newly activated nodes

Proof: The time complexity easily follow from the Alg.
1. It terminates when there are no newly activated nodes.
Each edge in E has only one chance to be used to adjust
its neighbors. Assume the input directed graph G does not
have isolated nodes, which means that |E| ≥ |V |. Hence the
Alg. 1 has time complexity O(|E|).

B. A Lower Bound for Computing the Influence Spread

Theorem 2. For any α ∈ [0, 1], there is a class of graphs
G(V,E) with |E| = Θ(n1+α) such that every algorithm that
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Figure 1. (1 + α)-Bipartite Graph

exactly computes the final activated nodes given an initial
seed set needs at least Ω(|E|) running time, where n = |V |

2 .

Proof: We can design a graph G(V1, V2, E) as shown
in Fig. 1, where |V1| = |V2| = n. Let the in-degree of each
node in V2 be nα, where α ∈ [0, 1]. Therefore we allow
a constant factor degree difference among the degrees of
nodes in V2. It is easy to see the existence of this kind of
graphs and we call them (1 + α)-graph.

Assume that there exists an o(|E|) time algorithm h(.) to
find the set of activated nodes from an initial set of active
nodes. Let G1 be a (1 + α)-graph such that for each edge
(vi, vj), it has weight wi,j = 1

degree(vj)
. The threshold tj =

1 for all nodes vj in G1. Assume the seed set is the set of all
the nodes in V1. Since h(.) runs in o(|E|) time, there exists
an edge (vi, vj) that the algorithm does not access. Let G′

1 be
the same graph as G1 except w′

i,j = 0. Since h(G′
1, V1) does

not access edge (vi, vj), we have h(G1, V1) = h(G′
1, V1) =

V1 ∪ V2, which is a contradiction.

III. APPROXIMATION AND INAPPROXIMATION FOR THE
ONE-ACTIVATE-ONE MODEL

In this section, we consider the IM problem under the
condition that a person can be activated by anyone of its
neighbors. It is a special case of the general deterministic
linear threshold model, in which a person needs multiple
active neighbors with weights to be activated. The problem
is solved by transforming it into the maximum coverage
problem. We derive a constant factor approximation that
matches the bound of the inapproximation.

The Influence Maximization Problem under the One-
Activate-One Model: Let G(V,E) be a directed graph.
Each directed edge (u, v) from node u to node v represents
that person u can activate person v. The problem is to
initially activate k people so that the largest number of
people will be activated eventually.

For an approximation solution, let Approximate(G, k)
represent the number of people who are eventually activated
directly or indirectly by the first selected k people and let
Optimal(G, k) represent the optimal solution. The problem
has a polynomial time approximation ratio c if and only if
Approximate(G, k) can be computed in polynomial time
and Optimal(G, k) ≤ c × Approximate(G, k) for every
input instance (G and k).

The maximum coverage problem is a classical problem
in the computational complexity theory. The input is a list
of m sets and an integer k. The target is to select k sets
from the list to cover the largest number of elements in
the ground set. It is well known that the maximum coverage
problem, such as Set Cover problem, Vertex Cover problem,
and Independent Set problem, has a e

e−1 -approximation and
the approximation ratio is optimal.

Theorem 3. There is a polynomial time e
e−1 -approximation

algorithm for the Influence Maximization problem in the
One-Activate-One model.

Proof: Assume that we have an input instance (G, k)
for the One-Activate-One IM problem. As shown in Alg. 2,
for each vertex vi in G, use the depth first search algorithm
to find all the vertices that are reachable from vi. This can be
done in linear time. The problem becomes a maximum cover
problem. Therefore, it has an polynomial time approximation
with e

e−1 .

Algorithm 2 Influence Maximization
1: Input: A directed graph G(V,E) and an integer k.
2: Output: a set of k nodes in V .
3: Let H denote the set of active nodes and P denote the

initial set.
4: for each node vi ∈ V , which has no incoming edges

do
5: Let Svi represent the set of nodes reachable from vi.
6: end for
7: for j ← 1 to k do
8: Select the set Svi

that maximize |H ∪ Svi
|

9: H ← H ∪ Svi
and P ← P ∪ {vi}.

10: end for

Theorem 4. If the Influence Maximization problem in the
One-Activate-One model has an approximation algorithm
with approximation ratio d, then the maximum coverage
problem has an approximation with ratio d + o(1).

Proof: Assume S1, · · · , Sm is a list of sets for the maxi-
mum coverage problem. We are going to construct a directed
graph G(V,E). Assume S1∪S2∪· · ·∪Sm = {a1, · · · , an}.
For each set Si, create a vertex vi in V . For each aj , create
hk2 vertices uj,1, · · · , uj,t in V , where t = hk2 and h is a
large constant. If aj ∈ Si, add directed edges from vi to all
uj,1, · · · , uj,t in E.

We claim that an optimal solution for the maximum
coverage problem can cover xo elements by selecting k sets
if and only if the One-Activate-One IM problem can activate
xot + k people by initially activating k people.

Let a d-approximation solution for the IM problem to
activate yt+k people. We have xot+k ≤ d(yt+k). We can
assume y ≥ 1; otherwise, all sets S1, · · · , Sm are empty. We
also assume k ≥ 1; otherwise, the problem is trivial. Thus,
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xo ≤ dyt + (d− 1)k
t

, (1)

≤ dy +
(d− 1)k

t
, (2)

≤ (d +
(d− 1)k

ty
)y, (3)

≤ (d +
(d− 1)

h
)y, (4)

≤ (d + o(1))y. (h is large) (5)

Hence, if the One-Activate-One IM problem has d-
approximation, we can also have an d− o(1) approximation
for the maximum coverage problem.

Corollary 1. There is no polynomial time ( e
e−1 − o(1))-

approximation for the One-Activate-One Influence Maxi-
mization problem unless NP ⊆ DTIME(nlog log n).

Proof: It simply follows from the Thm. 4 and Feige et
al.’s paper [3].

IV. INAPPROXIMATION FOR THE TWO-ACTIVATE-ONE
MODEL

In this section, we study a more general IM problem
that one person can be activated by one or two people. We
derive a strong inapproximation result for this problem even
in bounded degree graphs. To show the inapproximation,
we reduce the Set Cover problem to the IM problem in
polynomial time. The input of a Set Cover problem is
an integer k, and many sets S1, · · · , Sm and S, where
S1, · · · , Sm are m subsets of set S. The target is to find
k subsets Si1 , · · · , Sik

such that Si1 ∪ · · · ∪ Sik
= S. It is

well known that the Set Cover problem is NP-hard.

A. Bounded Degree Graphs

Definition 3. A graph G is a directed bounded (d1, d2)-
graph if every node in G has at most d1 incoming edges
and at most d2 outgoing edges. The IM problem over such
a directed graph is called (d1, d2)-Influence Maximization
((d1, d2)-IM) problem.

Lemma 1. Assume that w1, · · · , wn are nodes with at most
one incoming edge, and x is an isolated node. We can
create O(n) new nodes to form a (2, 2) graph such that x
is activated if and only if one of the nodes in {w1, · · · , wn}
is activated. Furthermore, x has at most one incoming edge
and no outgoing edge.

Proof: We can achieve the goal by finishing n phases.
In the first phase, we create a new node b1 and add an edge
from w1 to b1, and another edge from w2 to b1. If w1 or w2

is activated, then b1 will be activated. In the phase i+1, for
any 1 < i < n− 1, we create a new node bi+1, add an edge
from bi to bi+1 and another edge from wi+2 to bi+1 such
that bi+1 will be activated when bi or wi+2 is activated.

…... …...

…... …...

W1

W2

W3 Wi+1 Wn

b1

b2
bi-1

bi

x
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1 1

1

1

1

Figure 2. One-to-One Graph
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Figure 3. All-to-One Graph

After the phase n − 1, we add an edge from bn−1 to
x so that bn−1 can activate x. The total number of new
nodes is n − 1. Each node bi has two incoming edges and
one outgoing edge. Node x has one incoming edge and no
outgoing edge. The final (2, 2) graph is shown in Fig. 2,
each node in the graph has a determined threshold 1.

Lemma 2. Assume that w1, · · · , wn are nodes with at most
one incoming edge, and x is an isolated node. We can
create O(n) new nodes to form a (2, 2) graph such that
x is activated if and only if w1, · · · , wn are all active.
Furthermore, x has at most one incoming edges and no
outgoing edge.

Proof: The overall argument is similar to the proof of
Thm. 1. We still use n phases to construct the (2, 2) graph.
In the first phase, create b1 and add an edge from w1 to b1

with weight 1
2 , and another edge from w2 to b1 with weight

1
2 . If both w1 and w2 are activated, then b1 will be activated.
In the phase i + 1, we create node bi+1, add an edge from
bi to bi+1 and an edge from wi+2 to bi+1. If both bi and
wi+2 are active, then bi+1 will be activated.

After phase n − 1, we add an edge from bn−1 to x so
that bn−1 itself can activate x. The total number of new
nodes is n − 1. Each node bi has two incoming edges and
one outgoing edge. Node x has one incoming edge and no
outgoing edge. The final (2, 2) graph is shown in Fig. 3,
each node in the graph has a determined threshold 1.

B. An Inapproximation Result in the Bounded Degree
Graphs

Theorem 5. For any constant ε ∈ (0, 1), there is no poly-
nomial time p1−ε-approximation for the (2, 2)-IM problem
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unless P=NP, where p is the number of nodes in the directed
graph of social network.

Proof: We give a polynomial time reduction from the
Set Cover problem to a directed (2, 2) graph. Let S1, · · · , Sm

be the input for the Set Cover problem and S1∪S2∪· · ·Sm =
{a1, · · · , an}. Without loss of generality, assume ε < 1

100 .
Let p be the number of nodes in the graph, we first define
the following parameters:

p = (n + m)
20
ε , (6)

g(p) = pε, (7)
m5 = p1−8ε, (8)

p8ε ≥ m8 ≥ 3
4
p8ε, (9)

n ≤ p
ε
10 , (10)

k ≤ m ≤ p
ε
10 . (11)

The inequalities (10) and (11) follow from equality (6).
We construct the (2, 2) graph as follows:

Phase 1: For each set Si, create a vertex ui.
Phase 2: For each set Si with aj ∈ Si, create a vertex

xi,j and an edge from ui to xi,j such that node ui activates
node xi,j . If there are more than two elements in Si, create
a binary tree with root ui such that ui activates all of them.

Phase 3: Let Hj be the set of all nodes xi,j . For each
group Hj , create a vertex yj and add some additional
vertices such that yj will be activated if one of the nodes
in Hj is active. By Lemma 1, this part can be done in
polynomial time.

Phase 4: For each element aj , create a vertex vj . For each
yj , create an edge from yj to vj such that node yj activates
vj .

Phase 5: For each node vj , create a binary tree Tj with
root vj such that the tree has m5 leaves and vj can activate
all of those leaves. We label all the leaves as l1,j , · · · , lm5,j .

Phase 6: Create m5 groups G1, · · · , Gm5 of nodes. Each
group Gi contains nodes wi,1, · · · , wi,n. Create an edge from
li,j to wi,j such that node li,j activates node wi,j .

Phase 7: For each group Gi, create a node xi such that xi

will be activated if and only if all elements wi,1, · · · , wi,n

in Gi are activated. By Lemma 2, this part can be done in
linear time for each group Gi.

Phase 8: For each xi, create a path, which is called Yi,
starting from xi and has length m8 such that every nodes
in the path Yi can activate the next one.

Let A1,7 be the set of nodes created from Phase 1 to
Phase 7. Let A8 be the set of nodes created in Phase 8.
By inequalities (6) to (11), the number of nodes in A1,7 is
bounded by

|A1,7| ≤ O((n + m)2m5) = o(p1−ε). (12)

We also have the following equation:

p = |A1,7|+ m5m8. (13)

If we can select k nodes among u1, · · · , uk such that
the corresponding k subsets cover the entire set S, then
v1, · · · , vn can be activated. Thus, all the p nodes in the
constructed (2, 2) graph will become active.

Assume that there is a g(p)-approximation algorithm
which activates nodes in a set B. We claim that if |B| <

p
g(p) , then there is no solution for the Set Cover with k
subsets. Assume

|B| ≥ p

g(p)
= p1−ε. (14)

Thus, the number of activated nodes in the set A8 is at
least

|B| − |A1,7| ≥ |B| − o(p1−ε), (by (12)) (15)

≥ 1
2
|B|, (by (14)) (16)

≥ 50km8. (by (6) to (11)) (17)

We are going to transform the first k selected vertices
so that only the nodes in u1, · · · , um are selected. The
transformation follows the following rules:

1) If a selected node is in group Gi, then remove this node
and the nodes activated by the nodes from Gi. This loses the
number of activated nodes by at most O(n) + m8 ≤ 2m8.
The total number of activated nodes lost by this rule is at
most k(O(n)+m8) ≤ 2km8 since we select at most k nodes
to start the activation.

2) For each selected node, which is activated by a node
vj , replace it by vj . This does not decrease the number of
activated node.

3) For each selected node vj , replace it by a ui with
vj ∈ Si. This does not decrease the number of activated
nodes.

Finally, we only have the nodes in {u1, · · · , um} to be
selected to start the process of activation. The total number
of nodes lost activation is at most 2km8. By inequality (17),
we have the following equation:

|B| − |A1,7| ≥ 50km8 > 2km8. (18)

This implies that some nodes in Phase 8 are activated.
Therefore, we have a solution for the Set Cover problem
with k subsets.

V. APPROXIMATION FOR THE LEAST SEED SET
PROBLEM

In this section, we consider the Least Seed Set (LSS)
problem in the case that a person can be activated by anyone
of its neighbors. This problem was proposed by Ning Chen
in [13].

Least Seed Set Problem in the One-Activate-One
Model: Let G be a directed graph and T be a given set
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of nodes need to be activated. The LSS problem is to select
the least of nodes as seed set so that all the nodes in T will
be activated.

Theorem 6. There is a polynomial time O(log n)-
approximation algorithm for the LSS problem in the One-
Activate-One Model.

Proof: The proof of Thm. 4 shows that the LSS problem
can be converted to a Set Cover problem. Therefore, it has
a polynomial time approximation with O(log n) factor.

Theorem 7. If the One-Activate-One LSS problem has an
approximation algorithm with ratio d(n), then the maximum
coverage problem has an approximation algorithm with ratio
d(n).

Proof: Assume S1, · · · , Sm is the list of sets for the Set
Cover problem and S1 ∪S2 ∪ · · · ∪Sm = {a1, · · · , an}. We
can construct a social network as follows.

For each set Si, create a vertex ui. For each aj , create a
vertex vj , add directed edges from ui to vj if aj ∈ Si. An
edge from ui to vj means vj can be activated by ui. Let T
be the set of vertices {v1, · · · , vn}.

The Set Cover problem is converted into an One-Activate-
One LSS problem. It is easy to see the One-Activate-One
LSS problem has a d(n)-approximation if and only if the
Set Cover problem has a d(n)-approximation.

Corollary 2. There is no polynomial time o(log n)-
approximation for the LSS unless P = NP .

Proof: It follows from the Thm. 7 and the well known
inapproximability of the Set Cover problem.

VI. CONCLUSION AND FURTHER RESEARCH

In this paper, we show that the deterministic linear thresh-
old model has no polynomial time n1−ε-approximation
unless P=NP even in the simple case that one person needs at
most two active neighbors to become active. In the case that
a person can be activated after one of its neighbors become
active, there is a polynomial time e

e−1 -approximation, and
we prove it is the best possible approximation under a
reasonable assumption in the complexity theory. We also
show that there is a O(logn)-approximation for LSS problem
in the One-Activate-One model.

The general IM problem in the deterministic linear thresh-
old model looks very hard, but the Influence Computation
problem under this model can be solved in linear time.
Therefore, we can back up to some simple cases to further
study this problem. The following open problem will be
considered in our future research:

1) Is there a polynomial time O(log n)-approximation
for the LSS problem in degree bounded graphs under the
deterministic linear threshold model.

2) Is there a polynomial time O(log n)-approximation for
the LSS problem in the linear threshold model and the

independent cascaded model.
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