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Abstract—When a large amount of sensors are randomly
deployed into a field, how can we make a sleep/activate schedule
for sensors to maximize the lifetime of target coverage in the
field? This is a well-known problem, called Maximum Lifetime
Coverage Problem (MLCP), which has been studied extensively
in the literature. It is a long-standing open problem whether
MLCP has a polynomial-time constant-approximation. The best-
known approximation algorithm has performance ratio 1 + ln𝑛
where 𝑛 is the number of sensors in the network, which was
given by Berman et. al [1]. In their work, MLCP is reduced to
Minimum Weight Sensor Coverage Problem (MWSCP) which is
to find the minimum total weight of sensors to cover a given area
or a given set of targets with a given set of weighted sensors. In
this paper, we present a polynomial-time (4 + 𝜀)-approximation
algorithm for MWSCP and hence we obtain a polynomial-time
(4+ 𝜉)-approximation algorithm for MLCP, where 𝜀 > 0, 𝜉 > 0.

I. INTRODUCTION

Coverage, in general, answers the questions about quality of
service (surveillance) that can be provided by a particular sen-
sor network [2]. In this paper, we will study target coverage. In
target coverage, there are several points of interest in a given
region and sensors need to cover all the points. Sensors collect
the data by monitoring the targets in their sensing ranges.

With the current available technology, sensors are battery
powered [3]. Due to the limitation of battery, how to prolong
the network lifetime is a critical issue in wireless sensor
networks. For coverage problems, lifetime is the time duration
that all the targets or the area is continuously covered. There
are two main modes of sensor radio in the network — active
and sleep. Sleep means a sensor radio is turned off without
any activities while active means the radio is turned on and
the active sensors can sense the environment surrounding
them. One sensor can only be in one mode at a time. In [4],
Raghunathan et. al analyzed the power consumptions among
the different modes. The power consumption of sleep mode
is 0.03W — much less than that of active mode which varies
between 0.38W-0.7W.

As mentioned in [5], we can prolong network lifetime from
the following aspects — 1). alternate the nodes between active
and sleep modes, 2). topology control, 3) energy efficient
routing, and 4). develop appropriate date fusion [6].

In this paper, we will study reducing power consumption
rate in coverage by alternating the sensor modes. We divide
the coverage into several rounds. In each round, some sensors

will be activated while others will be inactivated. We need to
assure that all the targets are covered by the active sensors in
each round and the total active duration for every node in all
rounds will not exceed its power constraint.

In [7], Wang et. al selected disjoint coverage sets iteratively
until the remaining sensors could not fully cover the field. The
disjoint sets means there is no intersection among the sets.
However, disjoint coverage sets cannot extend the network
lifetime enough. We can further prolong the network lifetime
through non-disjoint coverage sets. Different from disjoint
sets, the sets in non-disjoint sets can have intersections. In Fig.
1 (a), there are three targets 𝑡1, 𝑡2, and 𝑡3 and three sensors 𝑠1,
𝑠2, and 𝑠3. Suppose that the battery power of each sensor is 1.
The feasible coverage sets are {𝑠1, 𝑠2}, {𝑠2, 𝑠3}, {𝑠1, 𝑠3}. For
the case of disjoint coverage, we can only choose one coverage
set from those three. The total lifetime of the network is 1.
However, if we consider the non-disjoint coverage, we choose
the three sets together and assign the lifetime of 1

2 to each set.
Then the total coverage lifetime will be 1.5 — increased by
50% compared to that of the disjoint case.

Hence, Cardei et. al studied the Maximum Lifetime
Coverage Problem (MLCP) with non-disjoint sensor subsets
in [5] by using linear programming and heuristic algorithms
to further prolong the network lifetime, although there was no
enough performance ratio analysis in their paper. Berman et.
al [1] proposed an approximation algorithm with performance
ratio 1+ln𝑛 where 𝑛 is the number of sensors in the network
by reducing the MLCP to Minimum Weight Sensor Coverage
Problem (MWSCP). The performance ratio varies with the
number of sensors in the network. In this paper, we will give
a constant ratio of the MLCP by proposing an approximation
with constant ratio for MWSCP, inspired by [8], [9].

Our contributions are mainly in the following aspects:
1) We propose an approximation algorithm for MLCP with

performance ratio (4 + 𝜉) with improvement from 1 +
ln𝑛, where 𝜉 > 0 and 𝑛 is the number of sensors.

2) We also design an approximation algorithm for MWSCP
with performance ratio (4 + 𝜀), where 𝜀 > 0.

3) Extensive simulations show better results of our algo-
rithms compared to other research works.

The rest of the paper will be organized as: in Section II, we
first introduce some preparations for future use. In Section III,
we will introduce the sensing model and the formal definitions
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Fig. 1. Network Model and Comparison of Disjoint and Non-Disjoint
Coverage

of MLCP and MWSCP. In Section IV, we will introduce two
algorithms for MLCP and MWSCP, respectively. In Section V,
the constant approximation ratios of the two algorithms will be
proved. In Section VI, extensive simulations will demonstrate
the efficiency and effectiveness of our two algorithms. In
Section VII, we will review the related work on coverage
problems. Finally, the paper will be concluded in Section VIII.

II. PRELIMINARY

The algorithms proposed in this paper are based on the
solutions to the two problems Minimum Weighted STrip
Coverage (MWSTC) and Minimum Weighted Chromatic
Coverage (MWCC). The definitions of MWSTC and MWCC
are give in Def. 1 and Def. 2, respectively.

Definition 1 (MWSTC). Given several horizontal strips where
there are a target set and a sensor set with different weights,
MWSTC is to find a sensor subset, the targets in each strip
are covered by the selected sensors from outside the strip, and
minimize the total weight of the selected sensors.

Definition 2 (MWCC). Given several horizontal strips with
a target set 𝒯 inside, a red sensor set ℛ and a blue set ℬ
where the sensors have different weights, MWCC is to find a
sensor subset (𝑅 ⊆ ℛ)

∪
(𝐵 ⊆ ℬ) satisfying that every target

is chromatic covered by at least one sensor from outside the
strips where the target is.

Usually, the sensing range of one sensor is a circle in 2-
dimension and the horizontal diameter can divide the sensing
range into two halves. In MWCC, the field is divided into
many strips and there are two colors of sensors — red and
blue. One sensor or one target can be in one and only one
strip. Chromatic cover is that each target is covered by the
lower half sensing range of red sensors or by the upper half
sensing range of blue sensors from outside the strip where
the target is. If one target is chromatic covered by a sensor,
then this target must be covered by this sensor. However, if
one target is covered by one sensor, it does not mean that
the target is chromatic covered by this sensor. For example,
in Fig. 2 (a), 𝑟1, 𝑟2, and 𝑟3 are red sensors and 𝑏1 is a blue
sensor. Target 𝑝𝑘 is in the higher half sensing range of 𝑟3.
𝑝𝑘 is covered by 𝑟3 but not chromatic covered by 𝑟3. 𝑝𝑘 is
chromatic covered by the blue sensor 𝑏1.

We use dynamic programming to solve MWCC in polyno-
mial time. Suppose there are 𝑚+2 strips in one graph. From
the top to the bottom, the strips are 𝑠𝑡𝑟0, 𝑠𝑡𝑟1, ..., 𝑠𝑡𝑟𝑚+1.
There are no targets in 𝑠𝑡𝑟0 and 𝑠𝑡𝑟𝑚+1. The red sensor set

in each strip 𝑠𝑡𝑟𝑖 is denoted as ℛ𝑖, the blue is denoted as ℬ𝑖,
and target set in the strip is denoted as 𝒯𝑖. During dynamic
programming process, we will deal with the targets from left to
right. The ordered target sequence is {𝑡𝑎𝑟1, 𝑡𝑎𝑟2, ...𝑡𝑎𝑟𝑘} from
left to right. For each target 𝑡𝑎𝑟𝑗 and its horizontal coordinate
𝑥𝑗 , there is a corresponding vertical line 𝐿𝑗 (𝑥 = 𝑥𝑗), as in
Fig. 2. We use ℐ𝑗 =

∏𝑚−2
𝑙=0 𝑅𝑙,𝑗×

∏𝑚+1
𝑙=2 𝐵𝑙,𝑗 . 𝑅𝑙,𝑗 (𝐵𝑙,𝑗) rep-

resents the red (blue) sensors in 𝑠𝑡𝑟𝑙 having intersection with
𝐿𝑗 . The

∏𝑚−2
𝑙=0 𝑅𝑙,𝑗 represents the cross product among red

sensors from all strips intersected with 𝐿𝑗 while
∏𝑚+1

𝑙=2 𝐵𝑙,𝑗

represents the cross product among blue sensors from all strips
intersected with 𝐿𝑗 . “×” presents the cross product of the red
and blue sensors. Red sensors can only use their lower half
area to chromatic cover targets and all targets in chromatic
coverage can only be covered by sensors outside the strip
where the targets are. Hence red sensors in 𝑠𝑡𝑟𝑚 and 𝑠𝑡𝑟𝑚+1

cannot be used to chromatic cover any targets. The similar
situation also happens to the blue sensors. Blue sensors in
𝑠𝑡𝑟0 and 𝑠𝑡𝑟1 cannot be used to chromatic cover any targets.
Since ℐ𝑗 denotes the sensors which may be used to chromatic
cover target 𝑗, it will exclude the red from 𝑠𝑡𝑟𝑚 and 𝑠𝑡𝑟𝑚+1

and blue from 𝑠𝑡𝑟0 and 𝑠𝑡𝑟1. For a given red sensor 𝑟𝑥 and a
target 𝑡𝑎𝑟𝑦 , we denote the lowest intersection of the sensing
range of 𝑟𝑥 and 𝐿𝑦 as 𝑖𝑛𝑡(𝑟𝑥, 𝐿𝑦) (e.g. 𝑖𝑛𝑡(𝑟1, 𝐿𝑗) in Fig. 2
(a)). For a given blue sensor 𝑏𝑥 and a target 𝑡𝑎𝑟𝑦 , we denote
the highest intersection of the sensing range of 𝑏𝑥 and 𝐿𝑦 as
𝑖𝑛𝑡(𝑏𝑥, 𝐿𝑦) (e.g. 𝑖𝑛𝑡(𝑏1, 𝐿𝑘) in Fig. 2 (a)).

For a given strip and the set of sensors in outside of the
strip, we have an observation in Lemma 1 as shown in Fig. 2.

Lemma 1. For any two red sensors (𝑟1, 𝑟2) and three 𝐿
lines from left to right 𝐿𝑗 , 𝐿𝑖−1, and 𝐿𝑖, the following three
statements cannot be true at the same time: 1). 𝑖𝑛𝑡(𝑟2, 𝐿𝑗)
is lower than 𝑖𝑛𝑡(𝑟1, 𝐿𝑗). 2). 𝑖𝑛𝑡(𝑟2, 𝐿𝑖−1) is no lower than
𝑖𝑛𝑡(𝑟1, 𝐿𝑖−1). 3). 𝑖𝑛𝑡(𝑟2, 𝐿𝑖) is no higher than 𝑖𝑛𝑡(𝑟1, 𝐿𝑖).

The blue sensors have the similar property as Lemma 1.
For a red sensor set 𝑅 and a vertical line 𝑙, we define

the lowest disk in each strip. Since we cannot assure that
nodes in 𝑅 have intersections with 𝑙 in each strip, we will
introduce 2𝑚 dummy sensors of weight 0 into our paper for
convenience. The 𝑚 dummy red sensors only have the upper
half sensing range with weight 0, while the 𝑚 dummy blue
sensors only have the lower half sensing rang with weight
0. The 𝑚 dummy red sensors will be evenly distributed
in the 𝑚 strips 𝑠𝑡𝑟0, ..., 𝑠𝑡𝑟𝑚−1 and the blues are evenly
distributed in 𝑠𝑡𝑟2, ..., 𝑠𝑡𝑟𝑚+1. Denote the red dummy sen-
sor in 𝑠𝑡𝑟𝑖 as 𝑟𝑖(𝑑𝑢𝑚) and denote the blue dummy sensor
in 𝑠𝑡𝑟𝑖 as 𝑏𝑖(𝑑𝑢𝑚). In addition, the sensing range of the
dummy sensors are big enough to have intersections with 𝐿
lines of all targets. According to the definition of MWCC,
none of the dummy sensors will contribute to the chromatic
target coverage. We define [ℛ𝑖] = ℛ𝑖

∪{𝑟𝑖(𝑑𝑢𝑚)} including
the red dummy sensor in 𝑠𝑡𝑟𝑖 and [ℬ𝑖] = ℬ𝑖

∪{𝑏𝑖(𝑑𝑢𝑚)}
including the blue dummy sensor in 𝑠𝑡𝑟𝑖. Hence, we have
[ℐ𝑗 ] =

∏𝑚−2
𝑙=0 [𝑅𝑙,𝑗 ] ×

∏𝑚+1
𝑙=2 [𝐵𝑙,𝑗 ]. Let 𝐷 ∈ [ℐ𝑖]. We define

𝑇𝑥(𝐷) to be the set of red and blue sensors with the minimum
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Fig. 2. (a). Property of targets in one strip and sensors outside the strip (b)
Double Partition and Shifting.

weight satisfying the following conditions:
1) All the 2𝑚 dummy sensors are included.
2) Sensors in 𝑇𝑥(𝐷) together cover all targets 𝑡𝑎𝑟1, ..., 𝑡𝑎𝑟𝑥

and every sensor in 𝐷 covers some targets in
𝑡𝑎𝑟1, ..., 𝑡𝑎𝑟𝑥, except the dummy sensors.

3) 𝐷
∩
[𝑅𝑖] has the lowest 𝑖𝑛𝑡 with 𝐿𝑥 among all red

sensors in 𝑇𝑥(𝐷)
∩
[𝑅𝑖] (∀0 ≤ 𝑖 ≤ 𝑚 − 1). We also

have 𝐷
∩
[𝐵𝑖] has the highest 𝑖𝑛𝑡 with 𝐿𝑥 among all

blue sensors in 𝑇𝑥(𝐷)
∩
[𝐵𝑖] (∀2 ≤ 𝑖 ≤ 𝑚+ 1).

We denote the total weight of sensors in 𝑇𝑥(𝐷) as
𝑤(𝑇𝑥(𝐷)). We define 𝐴𝑥(𝐷) = {𝐷′∣𝐷′ ∈ [ℐ𝑥−1], the red
𝑖𝑛𝑡’s of 𝐷 with 𝐿𝑥−1 are no lower than that of 𝐷′ in each
strip while the blue 𝑖𝑛𝑡’s of 𝐷 with 𝐿𝑥−1 are no higher than
that of 𝐷′}. 𝑤(𝑇𝑥(𝐷)) satisfies the recurrence 𝑤(𝑇𝑥(𝐷)) =

min
𝐷′∈𝐴𝑥(𝐷)

{𝑤(𝑇𝑥−1(𝐷
′))+𝑤(𝐷∖𝐷′)}. Initially, 𝑇0 includes all

2𝑚 dummy sensors and 𝑤(𝑇0) = 0. Finally, after we deal with
the rightmost target, we will select the feasible solution with
the minimum total weight as our solution. Next we will prove
that through this recurrence, we can get an optimal solution
to MWCC.

Lemma 2. We can get an optimal solution through recurrence
𝑤(𝑇𝑥(𝐷)) = min

𝐷′∈𝐴𝑥(𝐷)
{𝑤(𝑇𝑥−1(𝐷

′)) + 𝑤(𝐷∖𝐷′)}, if 𝐷

chromatic cover 𝑡𝑎𝑟𝑥. Otherwise, 𝑤(𝑇𝑥(𝐷)) = ∞.

Proof: We first prove ”≥”.
Let 𝐷′ be the subset of 𝑇𝑥(𝐷) and 𝐷′ has the lowest red

intersection and highest intersection with 𝐿𝑥−1 in each strip.
Since dummy sensors are introduced, there must be at least 2
intersections with 𝑇𝑥(𝐷) and 𝐿𝑥−1. Then we have 𝐷′ ∈ ℐ𝑘−1.
Hence, 𝑇𝑥(𝐷)∖(𝐷∖𝐷′) is a candidate of 𝑇𝑥−1(𝐷

′). We can
prove this by the way of contradiction. Suppose there is a
target 𝑡𝑎𝑟 which is not chromatic covered by 𝑇𝑥(𝐷)∖(𝐷∖𝐷′).
Without loss of generality, assume 𝑡𝑎𝑟 is chromatic covered by
some red sensor in 𝑟 ∈ (𝐷∖𝐷′) and 𝑟 ∈ 𝑅𝑙,𝑥. Let 𝑟′ ∈ 𝐷′ and
𝑟′ be red. Since 𝑡𝑎𝑟 is covered by 𝑟 instead of 𝐷′, 𝑟 and 𝑟′ are
different sensors. Lemma 1 is violated. Contradiction happens.
As a result, 𝑡𝑎𝑟 is chromatic covered by 𝑇𝑥(𝐷)∖(𝐷∖𝐷′).
Therefore, 𝑤(𝑇𝑥(𝐷)) − 𝑤(𝐷∖𝐷′) ≥ 𝑤(𝑇𝑥−1(𝐷

′)). That is,
𝑤(𝑇𝑥(𝐷)) ≥ min

𝐷′∈𝐴𝑥(𝐷)
{𝑤(𝑇𝑥−1(𝐷

′)) + 𝑤(𝐷∖𝐷′)}.

Next we will prove ”≤”.
We consider the chromatic coverage for 𝑡𝑎𝑟1, ..., 𝑡𝑎𝑟𝑥 of

𝑇𝑥−1(𝐷
′)
∪

𝐷, where 𝑇𝑥−1(𝐷
′) is the chromatic set for

𝑡𝑎𝑟1, ..., 𝑡𝑎𝑟𝑥−1, the red 𝑖𝑛𝑡 of 𝐷′ and 𝐿𝑥−1 in each strip is
lowest among all sensors in 𝑇𝑥−1(𝐷

′) and the blue is highest.

𝐷 is a chromatic coverage for 𝑡𝑎𝑟𝑥.
We first prove that ∀𝑠 ∈ 𝐷 and 𝐷 is not a dummy sensor,

then we have 𝑠 /∈ 𝑇𝑘−1(𝐷
′)∖𝐷′. This can be proved by the

way of contradiction. Suppose there is a red sensor 𝑟 ∈ 𝐷
having 𝑟 ∈ 𝑇𝑘−1(𝐷

′)∖𝐷′. Suppose 𝑟 ∈ 𝑅𝑙,𝑥 and 𝑟′ ∈ 𝐷′,
𝑟 ∈ [𝑅𝑙,𝑥−1]. Then we have 𝑟 has lower 𝑖𝑛𝑡(𝑟, 𝐿𝑥) and 𝑟′ has
lower 𝑖𝑛𝑡(𝑟′, 𝐿𝑥−1). Based on Lemma 1, 𝑇𝑘−1(𝐷

′)∖𝑟 would
be a feasible solution satisfying all the conditions of 𝑇 . Hence,
𝑇𝑘−1(𝐷

′) is not the minimal. Contradiction happens. ∀𝑟 ∈ 𝐷,
𝑟 /∈ 𝑇𝑘−1(𝐷

′)∖𝐷′.
We will prove that 𝑡𝑎𝑟1, ..., 𝑡𝑎𝑟𝑥 of 𝑇𝑥−1(𝐷

′)
∪

𝐷 satisfies
the three conditions of 𝑇 set. Firstly, 𝑇𝑥−1(𝐷

′) includes all
dummy sensors. Hence, 𝑇𝑥−1(𝐷

′)
∪
𝐷 includes all dummy

sensors. First condition of 𝑇 set is satisfied. Secondly, since
𝑇𝑥−1(𝐷

′) chromatic covers 𝑡𝑎𝑟1, ..., 𝑡𝑎𝑟𝑥−1 and 𝐷 chromatic
covers 𝑡𝑎𝑟𝑥, 𝑇𝑥(𝐷) chromatic covers all targets 𝑡𝑎𝑟1, ..., 𝑡𝑎𝑟𝑥.
Second condition is satisfied. We will prove the third condition
by the way of contradiction. Assume the third condition is
violated. Suppose there is a red sensor 𝑟′′ ∈ 𝑇𝑥−1(𝐷

′), 𝑟′′ ∈
𝑅𝑖 has lower 𝑖𝑛𝑡(𝑟′′, 𝐿𝑥) than 𝑖𝑛𝑡(𝑟, 𝐿𝑥), where 𝑟 ∈ 𝐷, 𝑟 ∈
𝑅𝑖. Suppose 𝑟′ ∈ 𝐷′, 𝑟′ ∈ 𝑅𝑖. Based on Lemma 1, 𝑟′′ is a
redundant sensor in 𝑇𝑥−1(𝐷

′). Violate the fact that 𝑇𝑥−1(𝐷
′)

is the minimal. 𝐷 satisfies the third condition.
Hence, 𝑤(𝑇𝑥(𝐷)) ≤ min

𝐷′∈𝐴𝑥(𝐷)
𝑤(𝑇𝑥−1(𝐷) + 𝑤(𝐷∖𝐷′).

In sum, “optimal” is proved.
The relationship between MWSTC and MWCC is studied

in Lemma 3.

Lemma 3. If there is an optimal solution to MWCC, then
there exists an approximation algorithm for MWSTC with
performance ratio of 2.

Proof: Given a graph 𝐺(𝒮, 𝒯 , ℰ ,𝒲), we can construct a
𝐺′(ℛ,ℬ, 𝒯 , ℰ𝑟𝑒𝑑, ℰ𝑏𝑙𝑢𝑒,𝒲𝑟𝑒𝑑,𝒲𝑏𝑙𝑢𝑒), where all the nodes in
𝒮 colored red form ℛ while all the nodes colored blue form
ℬ, ℰ𝑟𝑒𝑑 = ℰ𝑏𝑙𝑢𝑒 = ℰ , and 𝒲𝑟𝑒𝑑 = 𝒲𝑏𝑙𝑢𝑒 = 𝒲 .

Suppose 𝑅∗ ∪𝐵∗ is an optimal solution to MWCC and 𝑆∗

is an optimal solution to MWSTC. Then based on 𝑅∗ ∪𝐵∗,
we can construct a feasible solution 𝑆 to MWSTC. If a red sen-
sor in 𝑅∗ and one in 𝐵∗ corresponding to one sensor in 𝒮, then
we only count one 𝑆. Hence, we have 𝑤(𝑆) ≤ 𝑤(𝑅∗ ∪𝐵∗).

Let 𝑆∗ be an optimal solution to MWSTC. Duplicate the
nodes in 𝑆∗ and color the duplicates red 𝑆𝑟𝑒𝑑 and blue 𝑆𝑏𝑙𝑢𝑒,
respectively. 𝑅

∪
𝐵 form a solution to MWCC. We have

𝑤(𝑅∗ ∪𝐵∗) ≤ 𝑤(𝑅
∪

𝐵) = 2 ∗ 𝑤(𝑆∗).
In sum, we have 𝑤(𝑆) ≤ 2 ∗ 𝑤(𝑆∗).
Next, we will give an 2-approximation algorithm for MW-

STC in Alg. 1. The selected sensors in the Alg. 1 will construct
a MWSTC with performance ratio 2.

III. PROBLEM STATEMENT

In this paper, we will study Maximum Lifetime Coverage
Problem (MLCP). To solve MLCP, we reduce it to Minimum
Weight Sensor Coverage Problem (MWSCP) which is also
an important topic in research community. Before introducing
the formal definition of the two problems, we first clarify the
model in this paper.



Algorithm 1 Algorithm for MWSTC
Step 1. Duplicate the sensors in the original graph — one

is red and the one is blue.
Step 2. Solve the MWCC by dynamic programming.
Step 3. If one colored sensor is selected by the dynamic pro-

gramming, the corresponding sensor in the original
graph is selected.

A. Sensing Model

We model the sensor network as 𝐺(𝒮, 𝒯 , ℰ ,𝒲,ℒ), where 𝒮
represents the sensor set in the network, 𝒯 represents the target
set in the network, ℰ represents the edge set in the network
between sensors and targets, 𝒲 represents the weight of each
sensor, and ℒ represents the power constraint on each sensor.
There is an edge between a sensor node 𝑠 ∈ 𝒮 and a target
node 𝑡 ∈ 𝒯 if 𝑡 is in 𝑠’s sensing range. There are no edges
between sensors and sensors or between targets and targets.
In Fig. 1 (a), both targets 𝑡1 and 𝑡2 are in 𝑠1’s sensing range.
Correspondingly, in Fig. 1 (b), there are two edges incident on
𝑠1 linked to 𝑡1 and 𝑡2 respectively. We assume that the sensors
can interchange sleep and active modes in this paper. We also
assume there is no energy consumption in sleep mode.

B. Maximum Lifetime Coverage Problem (MLCP)

Due to the limitation on the sensor battery, if we can reduce
the energy consumption rate, then the coverage lifetime in
the network will be increased. In this paper, we study how
to divide the sensors into subsets and how to schedule the
coverage duration to each subset which can achieve fully target
coverage with reduced energy consumption rate. These subsets
can be disjoint and can also be non-disjoint. The formal
definition of MLCP is given in Def. 3. In this problem, we
assume all sensors in the network have the same weight.

Definition 3 (MLCP). MLCP is that given 𝐺 =
(𝒮, 𝒯 , ℰ ,𝒲,ℒ), find a set of sensor subsetsets and duration of
each subset (𝑆1, 𝐿1), (𝑆2, 𝐿2), ..., (𝑆𝑘, 𝐿𝑘) in 𝐺 to maximize∑𝑘

𝑖=1 𝐿𝑖, where 𝑆𝑖 represents the sensor subset in 𝐺 and 𝐿𝑖

represents the time duration of 𝑆𝑖, satisfying:
1) ∀𝑖 ∈ {1, 2, ..., 𝑘}, 𝑆𝑖 satisfies full coverage. ∀ 𝑡 ∈ 𝒯 and

∀𝑆𝑖, ∃𝑠 ∈ 𝑆𝑖 satisfying (𝑡, 𝑠) ∈ ℰ .
2) For each sensor, the total active time should be smaller

or equal to its power constraint.

C. Minimum Weight Sensor Coverage Problem (MWSCP)

Previous research on coverage focused on minimizing the
number of active nodes [10] without the consideration of the
different sensor weights. However, if the sensor weights in the
network are different, the number of the active nodes cannot be
a correct criteria. Hence, we will study MWSCP in this paper
with the assumption that the sensor weights are different. The
formal definition of MWSCP is given in Def. 4.

Definition 4 (MWSCP). MWSCP is to find a sensor subset
𝑆𝐶 in 𝐺 = (𝒮, 𝒯 , ℰ ,𝒲,ℒ) to minimize

∑
𝑠∈𝑆𝐶 𝑤(𝑠), where

𝑤(𝑠) represents the weight of sensor 𝑠, such that ∀ 𝑡 ∈ 𝒯 ,
∃𝑠 ∈ 𝑆𝐶 satisfying (𝑡, 𝑠) ∈ ℰ .

IV. ALGORITHMS

In this paper, MLCP is reduced to MWSCP based on the
idea of Primal-Dual-Method (PD-Method). Hence, we will
first introduce our approximation algorithm for MWSCP by
double partition and shifting with constant ratio 4 + 𝜀, where
𝜀 > 0. The construction of MWSCP is that we first divide the
whole region to subregion and further divide each subregion
into small squares. We guess the targets in each square is
covered by the sensors in the same square or not. After the
guess, we use Alg. 1 to solve the rest targets not covered.
Hence, we can get a MWSCP in each subregion with constant
ratio. To achieve a MWSCP with constant ratio in the whole
region, we use shifting.

A. Algorithm for MWSCP

Given a large area with many sensors and targets, finding
a minimum weight coverage set directly is difficult. Inspired
by divide and conquer, we will divide the area into several
subareas, find the minimum weight coverage set for each
subarea, and then combine them together to get the solution for
the whole area. We call this division as First Division (FD).
The area of each subregion after FD is (𝑚∗𝑠𝑟√

2
)×(𝑚∗𝑠𝑟√

2
), where

𝑠𝑟 is the sensing radius of each sensor, 𝑚 is given number
related to the performance ratio and 𝑚 > 1.

There is the strip concept in MWSTC, however, there is
no strip concept in FD. So how to apply the algorithm of
MWSTC to this area? It’s unreasonable to simply divide the
area into 𝑚 horizontal strips, because some targets in the
strips may covered by the sensors left or right to them in
the optimal solution. Hence, it’s not reasonable to divide the
area into vertical strips purely, either. In this paper, we divide
the area into both vertical strips and horizontal strips. Hence,
one subregion after FD will be divided into 𝑚 × 𝑚 smaller
squares of area 𝑠𝑟√

2
× 𝑠𝑟√

2
in the Second Division (SD).

For one square 𝑠𝑞, we denote the sensors in this square as
𝑆(𝑠𝑞) and denote the targets in the square as 𝑇 (𝑠𝑞). Denote
𝑂𝑃𝑇 as the optimal solution in the whole region. If we apply
Alg. 1 to the horizontal and vertical strips respectively and
combine the horizontal and vertical solutions together, then
one target will never be covered by the sensors in the same
square. However, ∃𝑠𝑞, 𝑂𝑃𝑇

∩
𝑆(𝑠𝑞) ∕= ∅. To improve our

algorithm performance, we will do the First Round Selection
(FRS) and then apply Alg. 1 to the rest sensors and targets
by FRS. FRS aims to solve the case that targets are covered
by the sensors in the same squares.

For one square 𝑠𝑞, we can define four locations — upper,
lower, left, and right. There are two possibilities for the target
coverage. One is that the targets in one square are covered by
sensors in the square while the other one is that the targets
in the square are covered by sensors outside the square. If we
guess that no sensor in one square is selected, then none of
the sensors in the square will be used for future selection. If
there is at least one sensor in the square is selected, then we
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Fig. 3. Properties in a square. (a). Partitions by 𝐿1(𝑝) and 𝐿−1(𝑝) and the
facts that △𝑙𝑜𝑤(𝑝) is covered by lower nodes. (b). △𝑙𝑜𝑤(𝑝, 𝑝′).

guess one and all other sensors in the square will be used for
future selection. We call this selection as the FRS.

First Round Selection (FRS): For each square with targets
inside, we first guess no sensors will be selected, that is none
sensors will be used for future selections. Then, we also make
another guess that one sensor covers all targets in the square
and the rest sensors will be used for future selections. Those
sensors in the squares without targets inside will be used for
further selection.

In the second guess in FRS, we will guess the sensor in the
square one by one.

The targets not covered by the selected sensors in FRS will
be divided into horizontal strips and vertical strips. All targets
in the horizontal strips will be covered by sensors in upper
or lower while those in the vertical will be covered by left or
right sensors. Before we introduce details of target division,
we will introduce some useful properties between targets in
one square and the sensors in the neighbor squares.

In Fig. 3 (a), one square 𝑆𝐴𝐵𝐶𝐷 can have at most eight
neighbor regions — upper left, upper center, upper right, right
center, left center, lower left, lower center, and lower right. If
there is a node 𝑝 in the square, we can draw two lines 𝐿1(𝑝)
and 𝐿−1(𝑝) of slopes 1 and −1, respectively. The two lines
will divide the square into at most four polygons, denoted as
△𝑢𝑝(𝑝), △𝑙𝑜𝑤(𝑝), △𝑙𝑒𝑓𝑡(𝑝), and △𝑟𝑖𝑔ℎ𝑡(𝑝).

Lemma 4. In Fig. 3 (a), if 𝑝 is covered by a vertex 𝑢 in the
area lower center (left center, right center, or upper center),
then the points in the area △𝑙𝑜𝑤(𝑝) (△𝑙𝑒𝑓𝑡(𝑝), △𝑟𝑖𝑔ℎ𝑡(𝑝), or
△𝑢𝑝(𝑝)) are covered by 𝑢.

Proof: △𝑙𝑜𝑤(𝑝) is a convex polygon. If we can prove
that every corner node is covered by 𝑢 or 𝑣 then all nodes in
△𝑙𝑜𝑤(𝑝) are covered by 𝑢.

Without loss of generality, take one corner node 𝑡 of the
intersection between 𝐿1(𝑝) and edge 𝐴𝐵 of length 𝑠𝑟√

2
. Draw

a midnormal 𝐿′ of edge 𝑝𝑡. Some of nodes 𝑢’s in △𝑙𝑜𝑤(𝑝) are
above 𝐿′, some others 𝑣’s are below 𝐿′ and the rest nodes will
be on 𝐿′. Based on the Pythagorean theorem, if 𝑝 is covered
by nodes from lower center neighbor square, then nodes on
𝐿′ in △𝑙𝑜𝑤(𝑝) must be covered too.

For the nodes 𝑢’s above 𝐿′, we will prove the length of
edge ∣𝑢𝑡∣ is smaller than 𝑠𝑟. Since 𝑢 is above 𝐿′, we have
∕ 𝑢𝑡𝑐 > 𝜋/4. We also have ∣𝑢𝑡∣ < ∣𝐶𝐷∣

𝑠𝑖𝑛∕ 𝑢𝑡𝑐
< 𝑠𝑟/

√
2

𝑠𝑖𝑛(𝜋/4) = 𝑠𝑟.
Hence, we have 𝑢 cover nodes above 𝐿′ in △𝑙𝑜𝑤(𝑝).

For the nodes 𝑣’s below 𝐿′, we have ∕ 𝑝𝑡𝑣 > ∕ 𝑡𝑝𝑣 .
Obviously, we have 𝑠𝑟 > ∣𝑝𝑣∣ > ∣𝑡𝑣∣. Thus, we have 𝑣 cover
nodes below 𝐿′ in △𝑙𝑜𝑤(𝑝). In sum, Lemma 4 is proved.

In Fig. 3 (b), there are two node 𝑝 on the left side and 𝑝′

on the right side in the square 𝑆𝐴𝐵𝐶𝐷. We define △𝑙𝑜𝑤(𝑝, 𝑝
′)

as the intersection area between △𝑙𝑜𝑤(𝑜) and the boundary
of the square. If 𝑝 = 𝑝′, then △𝑙𝑜𝑤(𝑝, 𝑝

′) = △𝑙𝑜𝑤(𝑝). Based
on Lemma 4, if 𝑝 or 𝑝′ is covered by the nodes from lower
center, then all nodes in △𝑙𝑜𝑤(𝑝) or △𝑙𝑜𝑤(𝑝

′) are covered
by the nodes from lower center too. Next, we will study the
properties of nodes in △𝑙𝑜𝑤(𝑝, 𝑝

′)∖(△𝑙𝑜𝑤(𝑝)
∪△𝑙𝑜𝑤(𝑝

′)). We
can define △𝑢𝑝(𝑝, 𝑝

′) through △𝑢𝑝(𝑝) and △𝑢𝑝(𝑝
′) in the

similar way.

Lemma 5. In Fig. 3 (b), if 𝑝 on the left side and 𝑝′ on the
right side are covered by nodes from lower center and neither
of them is covered by nodes from left center or right center,
then all points in the area △𝑙𝑜𝑤(𝑝, 𝑝

′)∖(△𝑙𝑜𝑤(𝑝)
∪△𝑙𝑜𝑤(𝑝

′))
can only be covered by nodes from upper or lower.

Proof: If △𝑙𝑜𝑤(𝑝, 𝑝
′)∖(△𝑙𝑜𝑤(𝑝)

∪△𝑙𝑜𝑤(𝑝
′)) = ∅, no

nodes are needed to be covered and then this Lemma is correct.
Otherwise, we prove this Lemma by contradiction. Suppose
that there exists a node in △𝑙𝑜𝑤(𝑝, 𝑝

′)∖(△𝑙𝑜𝑤(𝑝)
∪△𝑙𝑜𝑤(𝑝

′))
which can be covered by nodes from left center or right center.
Due to Lemma 4, one of 𝑝 and 𝑝′ can be covered by nodes
from left center or right center. Contradiction happens. Hence,
Lemma 5 is proved.

The two nodes 𝑝 and 𝑝′ covered by nodes from upper center
have the similar properties in Lemma 5.

Based on the Lemma 4 and Lemma 5, we can divide the
targets in one square into two parts — one part is covered
by upper or lower sensors and the other one is covered by
left or right sensors. The division is made through at most
one triangle and at most one inverse triangle constructed by
targets in the square.

Target Division (TD): Select at most two targets 𝑝1 on the
left and 𝑝2 on the right from the square. If the first two targets
are only covered by the sensors from lower center squares,
then create a polygon △𝑙𝑜𝑤(𝑝1, 𝑝2) through two lines 𝐿1(𝑝1)
and 𝐿−1(𝑝2). And then select at most two nodes 𝑝3 on the
left and 𝑝4 on the right. If the two targets are only covered by
the sensors from upper center squares, then create a polygon
△𝑢𝑝(𝑝3, 𝑝4) by lines 𝐿−1(𝑝3) and 𝐿1(𝑝4). Hence, all targets
in the square and also in the two polygons will be covered by
upper or lower sensors while the rest targets will be covered
by left or right sensors.

In TD, the 𝑝1 and 𝑝2 may have intersection which means
𝑝1 = 𝑝2. And it is also possible that neither 𝑝1 nor 𝑝2 exists.
It is even possible that 𝑝1, 𝑝2 have intersections with 𝑝3, 𝑝4.

After TD, we divide the targets into horizontal strips where
all targets will be covered by upper or lower sensors and
into vertical strips where all targets will be covered by left
or right sensors. Based on Lemma 4 and Lemma 5, we can
assure that all targets divided into horizontal can be covered by
upper or lower sensors and those divided into vertical can be
covered by left or right sensors. Then we can do our Second



Round Slection (SRS) — use Alg. 1 to solve the coverage
horizontally and vertically separately and combine the two
results together to get the solution to the rest targets after
FRS. The details of the algorithm for MWSCP are given in
Alg. 2 and Alg. 3.

Algorithm 2 Algorithm for MWSCP in region of area
𝑚∗𝑠𝑟√

2
× 𝑚∗𝑠𝑟√

2

Step 1. Do SD in the region of area 𝑚∗𝑠𝑟√
2

× 𝑚∗𝑠𝑟√
2

. For all
smaller squares of area 𝑠𝑟√

2
× 𝑠𝑟√

2
, do FRS.

Step 2. For the targets not covered by the selected sensors
in the FRS in Step 1, we will divide them following
TD.

Step 3. For the targets divided into the horizontal strips
and the vertical strips, use Alg. 1 in horizontal
and vertical strips, separately (SRS). Combine the
subsets in horizontal and vertical strips together to
get a coverage for the rest targets left by FRS.

Step 4. Output the subset with the minimum total weight
among all FRS and TD possibilities.

Algorithm 3 Algorithm for MWSCP in the whole region
Step 1. Divide the region based on the policies of FD.
Step 2. Do Alg. 2 in each subregion.
Step 3. Get the solution through combining the selected

sensors in all subregion.
Step 4. Shift the squares in the direction of slope 1 with

shifting distance ( 𝑠𝑟√
2
) and go to Step 2 until we

have shifted 𝑚 times.
Step 5. Output the solution with minimum weight.

We only need to consider 𝑚 shifts since after 𝑚 shifts,
the division will repeat one of the first 𝑚 shifts. Suppose the
square corner is on (0, 0) as the solid area in Fig. 2 (b). After
the first shifting, the square corner is moved to ( 𝑠𝑟√

2
, 𝑠𝑟√

2
) as

the dashed area in Fig. 2 (b). Select the one with the minimum
weight. The selected subset is the solution to MWSCP.

B. Algorithm for MLCP

Our MLCP can be written as a linear formula as given in
(1). And we solve the linear formula by using PD-method. In
PD-Method, we reduce the primal problem to dual problem
which is easier to be solved.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 : 𝐼𝑇𝑥 = 𝑥1 + 𝑥2 + ...+ 𝑥𝑘 (1)
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝐴𝑥 ≤ 𝑙, 𝑥 ≥ 0

In the above formula, 𝐼 represents a vector all elements in
which are 1. 𝐴 denotes a matrix with size 𝑚 ∗ 𝑘, where 𝑚 is
the number of sensors in the network. 𝐴𝑖,𝑗 represents whether
sensor 𝑠𝑖 is in the sensor subset 𝑆𝑗 . If sensor 𝑠𝑖 is in 𝑆𝑗 , then
𝐴𝑖,𝑗 = 1. Otherwise, 𝐴𝑖,𝑗 = 0. 𝑙 is a vector of the size of 𝑚.
Each element 𝑙𝑖 in the vector represents the lifetime of each
sensor 𝑠𝑖. 𝑥𝑗 presents the duration assigned to each sensor

subset 𝑆𝑗 . From formula (1), we need to find all possible
coverage sets firstly and then we can do scheduling of all
the coverage sets.

Assume formula (1) is a primal. The corresponding dual
formula is given in (2).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : 𝑏𝑇 𝑦 (2)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝐴𝑇 𝑦 ≥ 𝐼, 𝑦 ≥ 0

We first assign an initial weight 𝑤(𝑠𝑖) = 𝛿/𝑙(𝑠𝑖) to each sensor
𝑠𝑖 and the specific 𝛿 selection will be introduced later, where
𝑙(𝑠𝑖) is the lifetime of sensor 𝑠𝑖. 𝛿 should satisfy the constraint
that the total weight of sensors in the network should be
smaller than 1, that is

∑
𝑠∈𝒮 𝑤(𝑠) < 1, where 𝑤(𝑠) represents

the weight of sensor 𝑠. The algorithm for MLCP has two
parts. One part is packing [11] and the other one is MWSCP
algorithm in Subsection III-C. Initially, all variables in the
primal are 0 while each variable 𝑦𝑖 of the dual is 𝛿/𝑙(𝑖). There
are several rounds in the algorithm of packing. In each round,
we first selected a minimum weighted coverage subset. And
the time duration of the selected subset will be predetermined
(Step 2). And the weight of each selected sensor 𝑠𝑖 in the
dual problem will be increased to (1 + 𝜃 𝑙(𝑝)𝐴(𝑖,𝑞)

𝑙(𝑖)𝐴(𝑝,𝑞) ) ∗ 𝑤(𝑠𝑖),

where 𝑝 satisfies 𝑙(𝑝)
𝐴(𝑝,𝑞) = 𝑚𝑖𝑛𝑥

𝑙(𝑥)
𝐴(𝑥,𝑞) and the 𝑞 represents

one primal variable 𝑥𝑞. 𝐴(𝑝, 𝑞) cannot be 0 because of the
definition of 𝑙(𝑝)

𝐴(𝑝,𝑞) . In addition, if one sensor 𝑠𝑖 is selected,

then 𝐴(𝑖, 𝑞) = 1. Hence 𝑙(𝑝)𝐴(𝑖,𝑞)
𝑙(𝑖)𝐴(𝑝,𝑞) = 𝑙(𝑝)

𝑙(𝑖) . The algorithm will
stop when the value of the objective function in the dual is
over 1. Till now, several coverage subsets are selected and
these subsets may intersect with each other. As a result, the
total time usage of some sensors may be over their lifetimes.
Hence, we need to further normalize the duration of each
selected coverage subset.

The interesting point here is that we use a weighted cov-
erage algorithm to help us solve the scheduling problem in
unweighted coverage problems. During the packing algorithm,
the weights of the sensors will change. The Algorithm for
MLCP will be introduced in Alg. 4. In Alg. 4, we denote
𝐹 (𝐶) = 1 if 𝐶 is true. Otherwise, 𝐹 (𝐶) = 0.

Algorithm 4 Algorithm for MLCP
Step 1. Find an approximate minimum weighted coverage

subset 𝑆𝑥 by using Alg. 3.
Step 2. Assign duration 𝑡(𝑆𝑥) = 𝑚𝑖𝑛𝑠∈𝑆𝑥 𝑙(𝑠) to the se-

lected 𝑆𝑥.
Step 3. Update the weight of each sensor 𝑠𝑦 in 𝑆𝑥 as 1 +

𝜃 ∗ 𝑙(𝑝)
𝑙(𝑦) ∗ 𝑤(𝑦). Go to Step 1 until the total weight

of all the sensors is bigger or equal to 1.
Step 4. After the previous steps, we can get a subset col-

lection 𝑆1, ..., 𝑆𝑦 . For any sensor 𝑠, we count the
subsets that 𝑠 appears in as 𝑓(𝑠) =

∑𝑦
𝑖=1 𝐹 (𝑠 ∈

𝑆𝑖)×𝑡(𝑆𝑥). Then active time duration of each subset
𝑆𝑥 is determined by 𝑚𝑖𝑛𝑠∈𝑆𝑥

𝑙(𝑠)
𝑓(𝑠) × 𝑡(𝑆𝑥).

In Step 2 of Alg. 4, every selected subset is pre-assigned



a time duration. Step 4 is used to normalize the duration for
each subset.

V. THEORETICAL ANALYSIS

A. Performance Ratio of MWSCP

Theorem 1. The performance ratio of Alg. 2 is 4.

Proof: In Alg. 3, we guess many possibilities 𝐺1, ..., 𝐺𝑐

and denote the total weight for each guess 𝐺𝑖 as 𝑤(𝐺𝑖).
Suppose 𝐺∗ “corresponds” to the optimal solution. We denote
the optimal solution to the 𝑚∗𝑠𝑟√

2
× 𝑚∗𝑠𝑟√

2
as 𝑜𝑝𝑡𝑚×𝑚 and

denote the total weight of sensors in 𝑜𝑝𝑡𝑚×𝑚 as 𝑤(𝑜𝑝𝑡𝑚×𝑚).
“corresponds” means that the targets covered by the sensors in
the same squares in 𝑜𝑝𝑡𝑚×𝑚 are also covered by the sensors
in the same square in guess 𝐺∗, the targets covered by the
left and right sensors are also covered in 𝑜𝑝𝑡𝑚×𝑚 by the left
and right sensors are also covered by left and right sensors in
𝐺∗, and the targets covered by the upper and lower sensors
are also covered in 𝑜𝑝𝑡𝑚×𝑚 by the left and right sensors are
also covered by upper and lower sensors in 𝐺∗.

The optimal solution to the targets divided into vertical
strips is denoted as 𝑜𝑝𝑡(𝑉 ) and that of those divided into
horizontal strips is denoted as 𝑜𝑝𝑡(𝐻). Denote those sensors
guessed to cover the targets in the same squares as 𝑌 𝑒𝑠𝑔𝑢𝑒𝑠𝑠.
Then we have 𝑤(𝐺∗) ≤ 𝑤(𝑌 𝑒𝑠𝑔𝑢𝑒𝑠𝑠) + 2𝑤(𝑜𝑝𝑡(𝑉 )) +
2𝑤(𝑜𝑝𝑡(𝐻)), 𝑤(𝑜𝑝𝑡(𝐻)) ≤ 𝑤(𝑜𝑝𝑡𝑚×𝑚∖𝑌 𝑒𝑠𝑔𝑢𝑒𝑠𝑠), and
𝑤(𝑜𝑝𝑡(𝑉 )) ≤ 𝑤(𝑜𝑝𝑡𝑚×𝑚∖𝑌 𝑒𝑠𝑔𝑢𝑒𝑠𝑠). Hence, 𝑤(𝐺∗) ≤
4𝑜𝑝𝑡𝑚×𝑚.

Since we select the subset in 𝐺1, ..., 𝐺𝑐 with the mini-
mum total weight, we have min

1≤𝑖≤𝑐
𝑤(𝐺𝑖) ≤ 𝑤(𝐺∗). In sum,

min
1≤𝑖≤𝑐

𝑤(𝐺𝑖) ≤ 4𝑜𝑝𝑡𝑚×𝑚.

Theorem 2. The performance ratio of Alg. 3 is 4 + 𝜀, where
𝜀 = ⌈ 36

𝑚 ⌉ and 𝑚 > 1.

Proof: 𝑒 represents the subregion of size 𝑚∗𝑠𝑟√
2
×𝑚∗𝑠𝑟√

2
, 𝑆𝑒

represents the solution for the subregion 𝑒 in each shifting from
Alg. 3, and 𝑜𝑝𝑡𝑒 represents the optimal solution in subregion
𝑒. When 𝑚 > 1, one sensing range can only intersect with
at most four subregions of size 𝑚∗𝑠𝑟√

2
× 𝑚∗𝑠𝑟√

2
. 𝑜𝑝𝑡 denotes

the optimal solution to the whole region. We use 𝑎 to denote
one shifting, 𝐻𝑎 to denote the sensors in 𝑜𝑝𝑡 shared by two
vertical neighbor 𝑒’s in 𝑎, and 𝑉𝑎 to denote the sensors in
𝑜𝑝𝑡 shared by two horizontal neighbors 𝑒’s in 𝑎. Therefore,
we have

∑
𝑒 𝑤(𝑜𝑝𝑡𝑒) ≤ 𝑤(𝑜𝑝𝑡) + 𝑤(𝐻𝑎) + 2𝑤(𝑉𝑎). Each

sensor in 𝑉𝑎 or 𝐻𝑎 can only intersect with three 𝑒’s during
shifting process. Then, we have

∑
𝑎 𝑤(𝑉𝑎) ≤ 3𝑤(𝑜𝑝𝑡) and∑

𝑎 𝑤(𝐻𝑎) ≤ 3𝑤(𝑜𝑝𝑡). Thus, we have
∑

𝑎(
∑

𝑒 𝑤(𝑆𝑒)) ≤
4
∑

𝑎(
∑

𝑒 𝑤(𝑜𝑝𝑡𝑒)) ≤ 4(𝑚 ∗𝑤(𝑜𝑝𝑡) + 9𝑤(𝑜𝑝𝑡)). The average
weight after 𝑚 shifts is 1

𝑚

∑
𝑎(
∑

𝑒 𝑤(𝑆𝑒)) ≤ (4+ 36
𝑚 )𝑤(𝑜𝑝𝑡).

𝑤(𝑆𝑚𝑖𝑛) is the final result after shifting by choosing the
one with minimum total weight. Hence, we have 𝑤(𝑆𝑚𝑖𝑛) ≤
4 ∗∑𝑒 𝑤(𝑜𝑝𝑡𝑒) ≤ 1

𝑚

∑
𝑎(
∑

𝑒 𝑤(𝑆𝑒)) ≤ (4 + 36
𝑚 )𝑤(𝑜𝑝𝑡).

B. Performance Ratio of MLCP

Theorem 3. The performance ratio of Alg. 4 is 4 + 𝜉.

Proof: In Alg. 4, there are several rounds. In each round,
let 𝑊 (𝑦𝑘) =

∑
𝑖 𝑙(𝑖)𝑦𝑘(𝑖), where 𝑘 represents the round and

𝑦𝑘(𝑖) is the element of 𝑦 in the dual formula of round 𝑘. 𝑙(𝑖)
is the element in 𝑙. 𝑊 (𝑦0) = 𝑛𝛿, where 𝑛 is the number of
sensors.

𝑊 (𝑦𝑘) =
∑
𝑖

𝑙(𝑖)𝑦𝑘−1(𝑖) +

𝜃 ∗ 𝑙(𝑝)

𝐴(𝑝, 𝑞)

∑
𝑖

𝐴(𝑖, 𝑞)𝑦𝑘−1(𝑖)

≤ 𝑊 (𝑦𝑘−1) + 𝜃 ∗ 𝑟 ∗ 𝛼(𝑦𝑘−1) ∗ (𝑇𝑘 − 𝑇𝑘−1)

≤ 𝑊 (𝑦0) + 𝜃 ∗ 𝑟 ∗
𝑘∑

𝑙=1

𝛼(𝑦𝑙−1)(𝑇𝑙 − 𝑇𝑙−1) (3)

In Step 3 of Alg. 4, the weight of selected sensor 𝑠𝑖 from
Step 1 will be increased by 𝜃 × 𝑙(𝑝)

𝑙(𝑖) . Suppose the selected
subset in 𝐴 is column 𝑞 in round 𝑘, then the weight will be
increased by 𝜃 ∗ 𝑙(𝑝)

𝐴(𝑝,𝑞)

∑
𝑖 𝐴(𝑖, 𝑞)𝑦𝑘−1(𝑖). Define 𝛼(𝑦) as the

weight of the minimum sensor coverage given the weights
𝑦. 𝑦𝑘 represents the weights in round 𝑘. Hence, we have
𝑊 (𝑦𝑘) =

∑
𝑖 𝑙(𝑖)𝑦𝑘−1(𝑖) + 𝜃 ∗ 𝑙(𝑝)

𝐴(𝑝,𝑞)

∑
𝑖 𝐴(𝑖, 𝑞)𝑦𝑘−1(𝑖) and∑

𝑖 𝐴(𝑖, 𝑞)𝑦𝑘−1(𝑖) ≤ 𝑟 ∗𝛼(𝑦𝑘−1) in round 𝑘, where 𝑟 = 4+𝜀
is the performance ratio in Theorem 2 and 𝛼(𝑦𝑘−1) is the
minimum weight coverage in round 𝑘 − 1. 𝑇𝑘 denotes the
value of primal at the iteration 𝑘. Hence, we have deduction
in (3).

Let 𝛽 = 𝑚𝑖𝑛𝑦
𝑊 (𝑦)
𝛼(𝑦) , then we have 𝛽 ≤ 𝑊 (𝑦𝑙−1)

𝛼(𝑦𝑙−1)
. Hence, we

can get 𝛼(𝑦𝑙−1) ≤ 𝑊 (𝑦𝑙−1)
𝛽 . We define 𝑋(𝑦𝑘) = 𝑋(𝑦0)+𝜃∗𝑟∗∑𝑘

𝑙=1 𝛼(𝑦𝑙−1)(𝑇𝑙−𝑇𝑙−1). Since the dual problem is equivalent
to finding a variable 𝑦 such that 𝐷(𝑦)/𝛼(𝑦) is minimized, 𝛽 is
the optimal solution to primal and dual formulas. Obviously,
𝑋(𝑦𝑘) ≥ 𝑊 (𝑦𝑘) for any 𝑘 ≥ 1. 𝑋(𝑦0) = 𝑊 (𝑦0). Further, we
can get the deduction in (4).

Hence, we have 1 ≤ 𝑊 (𝑘) ≤ 𝑛𝛿 ∗ 𝑒 𝜃∗𝑟∗𝑇𝑘
𝛽 . Then we have

𝛽
𝑇𝑡

≤ 𝜃∗𝑟
𝑙𝑛(𝑛𝛿)−1 .

If 𝑧1+...+𝑧𝑡 = 𝑄 and 𝑧𝑥 > 0, then we have (1+𝑧1𝜃)...(1+
𝑧𝑡𝜃) ≥ (1 + 𝜃)𝑄. The following is to prove the scaling ratio.

Denote 𝑇𝑡 as the primal value we get from Alg. 4. However,
it is not a feasible solution to the primal since some constraint
(
∑

𝑗 𝐴(𝑖, 𝑗)𝑥(𝑗))/𝑙(𝑖) ≤ 1 may be violated. In one round, we
select a subset 𝑆𝑞 and increase 𝑥(𝑞) by 𝑙(𝑝)/𝐴(𝑝, 𝑞), the left-
hand-side (LHS) of the 𝑖th constraint will be increased by 𝑧 =
𝐴(𝑖,𝑞)𝑙(𝑝)
𝑙(𝑖)𝐴(𝑝,𝑞) . Meanwhile, the dual variable 𝑦(𝑖) will be increased
by 𝜃∗𝑧 ∗𝑦(𝑖). Based on the way we choose 𝑝, we have 𝑧 ≤ 1.
Suppose 𝑦𝑡(𝑖) = 𝛿(1 + 𝑧1𝜃)...(1 + 𝑧𝑡𝜃) and

∑
𝑥 𝑧 = 𝑄 (LHS

constraint 𝑖). Then we have 𝑦𝑡(𝑖) ≥ 𝛿(1 + 𝜃)𝑄. In the last
round in Alg. 4, 𝑦𝑡(𝑖) < (1+𝜃). As a result, 𝑄 < 𝑙𝑜𝑔1+𝜃

1+𝜃
𝛿 .

𝑟𝑀𝐿𝐶𝑃 = 𝛽
𝑇𝑡/𝑄

≤ 𝜃∗𝑟∗𝑙𝑜𝑔1+𝜃
1+𝜃
𝛿

𝑙𝑛(𝑛𝛿)−1 . If 𝛿 = (1 + 𝜃)((1 +

𝜃)𝑚)−1/𝜃, we have 𝑙𝑛(1+𝜃)𝛿−1

𝑙𝑛(𝑛𝛿)−1 = (1− 𝜃)−1. Hence, we have
𝑟𝑀𝐿𝐶𝑃 ≤ 𝜃𝑟

(1−𝜃)𝑙𝑛(1+𝜃) ≤ 𝜃𝑟
(1−𝜃)(𝜃−𝜃2) ≤ 𝑟

(1−𝜃)2 .
If we choose appropriate 𝜃, we can get 𝑟+𝑤 = 4+ 𝜀+𝑤

performance ratio of Alg. 4. We define 𝜀+𝑤 = 𝜉. Hence, we
get Theorem 3.



𝑋(𝑦𝑘) = 𝑋(𝑦0) +
𝜃 ∗ 𝑟
𝛽

∗
𝑘∑

𝑙=1

𝑋(𝑦𝑙−1)(𝑇𝑙 − 𝑇𝑙−1)

= 𝑋(𝑦0) +
𝜃 ∗ 𝑟
𝛽

𝑘−1∑
𝑙=1

𝑋(𝑦𝑙−1)(𝑇𝑙 − 𝑇𝑙−1)

+
𝜃 ∗ 𝑟
𝛽

𝑋(𝑦𝑘−1)(𝑇𝑘 − 𝑇𝑘−1)

= 𝑋(𝑦𝑘−1) +
𝜃 ∗ 𝑟
𝛽

𝑋(𝑦𝑘−1)(𝑇𝑘 − 𝑇𝑘−1)

≤ 𝑒(
𝜃∗𝑟∗(𝑇𝑘−𝑇𝑘−1)

𝛽 )𝑋(𝑦𝑘−1)

≤ 𝑋(𝑦0) ∗ 𝑒
𝜃∗𝑟∗𝑇𝑘

𝛽 (4)

VI. SIMULATION

In this section, we will evaluate our algorithms for MLCP
and MWSCP respectively by comparing them with other
algorithms, in terms of the lifetime and the total weight.
To show our algorithm is lifetime efficient, Alg. 4 will be
compared to those algorithms in [1], [5]. Our algorithm for
MWSCP will be compared to that in [1] with performance
ratio 1 + ln𝑛.

A. Simulation Environment

According to our sensing model introduced aforementioned,
the sensing ranges of all sensors in a network are same. All
targets and sensors are deployed randomly in a fixed area of
6
√
2∗6√2. The number of sensors is incremented from 15 to

70 by 5, while transmission range is fixed at 2. The number
of targets varies between 5 and 10.

B. Simulation Results

Fig. 4 shows the lifetime comparisons between Alg. 4
and the heuristic algorithm in [5] with fixed 𝛿 = 0.01 and
𝜃 = 0.5. In the heuristic algorithm, the time duration of each
selected subset is predetermined which we set as 0.2. The
targets in Fig. 4 varies between 5 and 10. Every target in the
network may be covered by more sensors when the number of
sensors becomes larger. Hence, the feasible coverage sensor
subsets may become more. Then the total coverage lifetime
will become larger. Thus in Fig. 4, the lifetimes increase when
the sensor number increases for a given number of targets
and the lifetime of 10 targets is smaller than that of 5 targets
for a given number of sensors. We can also tell that Alg. 4
performs better than the heuristic algorithm in [5] for a given
number of targets and sensors. From Fig. 4 (b), it shows that
we can prolong the lifetime through increasing the 𝑚 value
in Alg. 4 because the decision on each sensor can depend on
more information when 𝑚 becomes larger. Consider the two
cases 𝑚1 and 𝑚2 having 𝑚1 > 𝑚2. One subregion of size
𝑚1∗𝑠𝑟√

2
×𝑚1∗𝑠𝑟√

2
may contain a subregion of size 𝑚2∗𝑠𝑟√

2
×𝑚2∗𝑠𝑟√

2
.

The selection of sensors in 𝑚2∗𝑠𝑟√
2

× 𝑚2∗𝑠𝑟√
2

will be better if
we know more information because local optimization is no
better than the global optimization.
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Fig. 4. Comparison of Lifetime. (a). Lifetimes among different algorithms.
(b). Lifetimes among different partitions.
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Fig. 5. (a). Lifetimes among different 𝜃 and 𝛿. (b). Weight Comparisons of
MWSCP among different partitions.

To study the effects of different variables 𝛿 and 𝜃, we
compare different lifetimes among different 𝛿 and 𝜃 in Fig.
5 (a). From Fig. 5 (a), we can tell that the smaller 𝛿 and 𝜃 can
help achieve longer lifetime. To study the efficiency of Alg.
3, we compare it with the heuristic algorithm in [1] in Fig. 5
(b) given the fixed target number 5. From the figure, we can
tell that the size of the minimum coverage sensor subset of
Alg. 3 is smaller than that in [1] when 𝑚 = 6. However, when
𝑚 = 3, our total weight is bigger than that in [1], because our
decision is made in a smaller region than that in [1].

VII. RELATED WORK

Recently, the improvement in sensor technology makes
possible the wide use of sensor networks. Sensor networks
have many applications in health care industry, food industry,
national security, etc. Coverage is a fundamental problem in
wireless sensor networks.

Based on how the sensors deployed, the coverage problems
can be categorized into deterministic coverage and random
coverage [2].

In deterministic coverage, the sensor locations are not
predetermined. The objective is to study how to deploy the
sensor to minimize sensors needed to cover all targets or to
maximize the network lifetime if the number of sensors is
given. In [12], Kar et. al proposed an approximation algorithm
to minimize the sensor number with performance ratio 7.256
when transmission range equals the sensing range. Dasgupta
et. al [13] prolonged the network lifetime by 40% through
deterministic sensor deployment, compared to that of the
random sensor deployment when the sensor number is same.

In random coverage, the sensors are assumed to be deployed
randomly and users select the sensor subset from the deployed
sensors. There are two main states of sensor radio in the
network — active and sleep. Since the power consumption
difference between active and sleep states is very big [4], it’s



a practical strategy to alternate the sensor state between active
and sleep.

The random coverage problems can also be further di-
vided into minimizing the number of active nodes [14] and
maximizing the network lifetime [5]. When the sensors have
different weights, minimization of active sensor number is
not enough. Hence in [1], Minimum Weight Sensor Coverage
Problem (MWSCP) was studied and an approximation algo-
rithm was proposed with performance ratio 1+ ln𝑛, where 𝑛
is the number of sensors in the network. In the second type
of random coverage problems, there exists two assumptions
— disjoint coverage sets and non-disjoint coverage sets. In
disjoint coverage problem, it is assumed that each individual
sensor has the same lifetime. Thus, the network lifetime maxi-
mization is equivalent to disjoint cover set maximization [15].
In [16], Cardei et. al proved that cover set maximization is NP-
complete by reduction to a well know NP-complete problem
3-SAT. They transformed the set maximization to maximum
flow problem and solved it by mixed integer programming.
In disjoint coverage sets, Lu et. al also studied the adjustable
sensing range [17]. To further prolong the network lifetime,
non-disjoint coverage sets were proposed in [1], [5]. However,
neither [1] nor [5] gave a constant performance ratio. In
this paper, we will propose an approximation algorithm with
constant ratio for the non-disjoint coverage problem.

Based on the coverage level, we can also divide the coverage
into two types: full coverage [5] and partial coverage [18].

Based on the coverage objective, the coverage problems can
be divided into area coverage [19], target coverage [5], and
coverage problems that have an objective to determine the
maximal support/breach paths that traverse a sensor field [20].
The third type is also known as tracking [21].

All the above coverage studies have the same assumption
that the objective area and targets are unweighted. [22] studied
the coverage of the weighted area. [22] proved that both
Critical-Grid Coverage Problem and Weighted-Grid Coverage
Problem are NP-Complete.

In each category, there are many coverage variations like
directional coverage [23], 𝑘-coverage [24], etc.

VIII. CONCLUSION

In this paper, we study MLCP since power consumption
is critical in wireless sensor networks. A lot of work has
been devoted to MLCP. However, no algorithm with constant
performance ratio was given. To propose an algorithm for
MLCP with constant performance ratio, we reduce MLCP to
MWSCP. We first give an algorithm for MWSCP with constant
approximation ratio 4+ 𝜀, where 𝜀 > 0. As a result, we get a
constant approximation algorithm for MLCP with ratio 4+ 𝜉,
where 𝜉 > 0. Thorough simulation experiments are also done
in this paper to show the performance of our algorithms.
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