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Abstract A sensor with two active phrases means that active mode has two phases, the
full-active phase and the semi-active phase, which require different energy consumptions.
A full-active sensor can sense data packets, transmit, receive, and relay the data packets.
A semi-active sensor cannot sense data packets, but it can transmit, receive, and relay data
packets. Given a set of targets and a set of sensors with two active phrases, find a sleep/active
schedule of sensors to maximize the time period during which active sensors form a connected
coverage set. In this paper, this problem is showed to have polynomial-time (7.875 + ε)-
approximations for any ε > 0 when all targets and sensors lie in the Euclidean plane and
all sensors have the same sensing radius Rs and the same communication radius Rc with
Rc ≥ 2Rs .
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1 Introduction

There are many optimization problems on energy efficiency in wireless sensor networks
[3,5,10–13]. In this paper, we study one of them.

Consider a wireless sensor network consisting of sensors with active mode and sleep
mode where active mode has two phases, the full-active phase and the semi-active phase.
A full-active sensor can sense data packets, transmit, receive, and relay the data packets.
A semi-active sensor cannot sense data packets, but it can transmit, receive, and relay data
packets. Clearly, a sensor in full-active phase consumes more energy than in semi-active
phase. This model has been studied in the literature [15].

In many cases, sensors are randomly deployed into hostile environment, such as battle-
field, inaccessible area with chemical or nuclear pollution, so that recharging batteries of
sensors is a mission impossible. This means that the lifetime of each sensor depends on
energy consumption. For simplicity, we may assume the battery of each sensor contains a
unit amount of energy.

In this paper, we study the problem of environment monitoring, i.e., given a set of targets,
sensors are used to sense them and to delivery obtained data to data center. For this purpose,
the wireless sensor network is said to be alive if it can do our job, i.e., it satisfied the following
two conditions:

(A1) Every target is monitored by a full-active sensor, and
(A2) all active sensors induce a connected subgraph.

We are interested in studying the problem of active/sleep scheduling of sensors to maxi-
mize the lifetime of given wireless sensor network.

This problem is called the maximum lifetime connected coverage, which is equivalent to
a min-max problem as follows: Suppose the lifetime of wireless network is fixed and the
energy of every sensor is unlimited. Find an active/sleep schedule to minimize the maximum
energy consumption of a sensor.

In this paper, we show that the maximum lifetime connected coverage problem has poly-
nomial-time (7.875+ε)-approximations for any ε > 0 when all targets and sensors lie in the
Euclidean plane and all sensors have the same sensing radius Rs and the same communication
radius Rc with Rc ≥ 2Rs . So does the min-max problem.

2 A primal-dual method

Let S be the set of all sensors. Assume all sensor are of same type. Let u be the energy
consumption of a full-active sensor during a unit time period and v the energy consumption
of a semi-active sensor during a unit time period. Assume u ≥ v. A set pair p is called an
active sensor set pair if p = (p1, p2) where p1 is a set of full-active sensors and p2 is a set
of semi-active sensors with p1 ∩ p2 = ∅. For any active sensor set pair p, define

as,p =
⎧
⎨

⎩

u if s ∈ p1,

v if s ∈ p2,

0 otherwise.

Let C be the collection of all active sensor set pairs satisfying conditions (A1) and (A2). The
maximum lifetime connected coverage problem can be formulated as the following linear
programming:
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max
∑

p∈C
x p

subject to
∑

p∈C
as,px p ≤ 1 for s ∈ S

x p ≥ 0 for p ∈ C.

Its dual is as follows.

min
∑

s∈S

ys

subject to
∑

s∈S

as,p ys ≥ 1 for p ∈ C,

ys ≥ 0 for s ∈ S.

Motivated from the work of Garg and Könemann [7], we design the following primal-dual
algorithm.

Initially, choose x p = 0 for all p ∈ C and ys = δ for all s ∈ S where δ is a positive
constant which will be determined later.

In each iteration, we first compute a ρ-approximation solution p∗ for

min
p∈C

∑

s∈S

as,p ys . (1)

and then compute a solution s∗ for

max
s∈S

as,p∗ .

Next, update x p and ys as follows:

(B1) x p does not change for p �= p∗, and

x p∗ ← x p∗ + 1

as∗,p∗
.

(B2) ys does not change for s �∈ p∗1 ∪ p∗2 , and

ys ← ys

(

1+ θ
as,p∗

as∗,p∗

)

for s ∈ p∗1 ∪ p∗2 where θ is a constant chosen later.

Clearly, after each iteration, some values of ys are increased so that some constraints in
dual linear programming get satisfied or close to satisfied. The algorithm will stop when
(ys, s ∈ S) becomes dual feasible, that is, all constrains in dual linear programming are
satisfied.

There are two important properties at end of algorithm.

Lemma 1 At end of algorithm, (x p, p ∈ C) may not be primal feasible. However, (x p/τ, p ∈
C) is a primal-feasible solution for τ = (v/u) ln 1+θ

vδ

ln(1+θv/u)
.

Proof First, note that at end of the algorithm, ys < (1+ θ)/v. In fact, when ys gets updated,
following facts must hold:

123



J Glob Optim

(a) (ys, s ∈ S) is not dual-feasible.
(b)

∑
s∈S as,p∗ ys < 1. ((b) follows from (a).)

(c) s ∈ p∗1 ∪ p∗2 .

It follows from (b), (c) that ys < 1/v before ys receives any value change. After ys is
updated, we have

ys <

(

1+ θ
as,p∗

as∗,p∗

)

/v ≤ (1+ θ)/v.

Therefore, at end of algorithm, ys < (1+ θ)/v.
Now, consider a constraints in the primal linear programming,

∑

p∈C
as,px p ≤ 1,

which may not be satisfied after x p is updated. If updating x p gives the value of
∑

p∈C as,px p

an increase in
as,p∗
as∗,p∗ , then the value of ys is increased by multiplying a factor 1 + θ

as,p∗
as∗,p∗ .

Note that
as,p∗
as∗,p∗ has only two nonzero values, v/u and 1. Suppose

as,p∗
as∗,p∗ takes value v/u for

k times and 1 for � times. Then the value of
∑

p∈C as,px p receives an increase in k(v/u)+ �

and

(1+ θv/u)k(1+ θ)� ≤ 1+ θ

vδ

since initially ys = δ. Moreover, initially,
∑

p∈C as,px p = 0. Thus, at end of algorithm, the
value of

∑
p∈C as,px p is k(v/u)+ �, which is upper-bounded by the maximum value of the

following linear programming with respect to k and �:

max k(v/u)+ �

subject to k ln(1+ θv/u)+ � ln(1+ θ) ≤ ln
1+ θ

vδ
k ≥ 0, � ≥ 0.

Note that in any linear programming, the maximum value of objective function is reached at
an extreme point. The feasible domain of above linear programming has three extreme points

(0, 0),

(

0,
ln 1+θ

vδ

ln(1+ θ)

)

,

(
ln 1+θ

vδ

ln(1+ θv/u)
, 0

)

,

which give objective function values

0,
ln 1+θ

vδ

ln(1+ θ)
,

v

u
· ln 1+θ

vδ

ln(1+ θv/u)
,

respectively. Since z
ln(1+θ z) is strictly monotone decreasing for z ≤ 1, we have

0 <
ln 1+θ

vδ

ln(1+ θ)
<

v

u
· ln 1+θ

vδ

ln(1+ θv/u)
.

Therefore, at end of algorithm,

∑

p∈C
as,px p ≤ τ = v

u
· ln 1+θ

vδ

ln(1+ θv/u)
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that is,
∑

p∈C
as,px p/τ ≤ 1.

��
Lemma 2 At end of algorithm,

∑

p∈C
x p/τ ≥ ln(v|S|δ)−1

τθρ
· opt

where opt is the objective function value of optimal solution for the maximum lifetime con-
nected coverage problem and τ = (v/u) log1+θv/u

1+θ
δv

.

Proof Let us denote the initial value of x p and ys by x p(0) and ys(0). Denote by x p(i) and
ys(i) the value of x p and ys after the i th iteration. Denote by s∗(i) and p∗(i) the value of s∗
and p∗ in the i th iteration. Furthermore, denote X (i) =∑

p∈C x p(i) and Y (i) =∑
s∈S ys(i).

Then, for i ≥ 1, we have

Y (i) =
∑

s∈S

ys(i − 1)+ θ
1

as∗(i),p∗(i)

∑

s∈S

as,p∗(i)ys(i − 1)

≤ Y (i − 1)+ θ(X (i)− X (i − 1))ρ min
p∈C

∑

s∈S

as,p ys(k − 1).

It follows that

Y (i) ≤ Y (0)+ θρ

i∑

k=1

((X (k)− X (k − 1)) min
p∈C

∑

s∈S

as,p ys(k − 1).

Note that opt is also the objective function value of optimal solution for the dual linear
programming. Therefore,

opt = min
ys

∑
s∈S ys

minp∈C
∑

s∈S as,p ys
,

where the minimiation is taken over ys ≥ 0 for s ∈ S. Thus,

min
p∈C

∑

s∈S

as,p ys(k − 1) ≤ Y (k − 1)

opt
.

Hence

Y (i) ≤ |S|δ + θρ

opt

i∑

k=1

(X (k)− X (k − 1))Y (k − 1).

Define

w(0) = |S|δ
and

w(i) = |S|δ + θρ

opt

i∑

k=1

(X (k)− X (k − 1))w(k − 1).
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It is easy to prove by induction on i that Y (i) ≤ w(i). Moreover,

w(i) =
(

1+ θρ

opt
(X (i)− X (i − 1))

)

w(i − 1)

≤ e
θρ
opt (X (i)−X (i−1))

w(i − 1)

≤ e
θρ
opt X (i)

w(0)

= e
θρ
opt X (i)|S|δ.

Suppose the algorithm stops at the mth iteration. Then Y (m) ≥ 1/v. Hence

1/v ≤ Y (m) ≤ w(m) ≤ |S|δe
θρ
opt X (m)

.

Therefore,

opt

X (m)/τ
≤ τθρ

ln(v|S|δ)−1 .

��
Theorem 3 If the problem (1) has a polynomial-time ρ-approximation, then the maximum
lifetime connected coverage problem has a polynomial-time ρ(1+ ε)-approximation for any
ε > 0.

Proof Choose δ = (1+ θ)((1+ θ)|S|)−θ /v. Then

ln 1+θ
δv

ln(δv|S|)−1 =
1

1− θ
.

Moreover, (1+ θv/u)u/(vθ)+1 > e, i.e., ln(1+ θv/u) > vθ
u+vθ

. Thus,

τθρ

ln(v|S|δ)−1 =
(v/u)θρ

(1− θ) ln(1+ θv/u)
≤ ρ · 1+ θ(v/u)

1− θ
.

Choose θ such that

1+ θv/u

1− θ
< 1+ ε.

Then

opt
∑

p∈C x p/τ
≤ (1+ ε)ρ.

Next, we estimate the running time of the algorithm. Since ρ-approximation solution p∗
for the problem (1) is assumed to be polynomial-time computable, every iteration can be car-
ried out in polynomial-time. Therefore, it suffices to estimate the number of iterations. Note
that at each iteration, at least one of ys has its value increased. In the proof of Lemma 1, we
showed that when the algorithm ends, each ys has its value increased at most log1+θv/u

1+θ
δv

times. Therefore, the number of iterations is at most

|S| log1+θv/u
1+ θ

δv
= |S|θ ln((1+ θ)|S|)

ln(1+ θv/u)
= O(|S| log |S|)

for δv = (1+ θ)((1+ θ)|S|)−θ and θ is fixed as ε is fixed. ��
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In next section, we will show that the problem (1) has polynomial-time (7.875 + ε)-
approximations for any ε > 0 when all targets and all sensors lie in the Euclidean plane and
all sensors have the same sensing radius Rs and the same communication radius Rc with
Rc ≥ 2Rs . The following is obtained by Theorem 3 and this fact.

Theorem 4 The maximum lifetime connected coverage problem has polynomial-time
(7.875+ ε)-approximations for any ε > 0 when all targets and all sensors lie in the Euclid-
ean plane and all sensors have the same sensing radius Rs and the same communication
radius Rc with Rc ≥ 2Rs.

3 Weighted connected coverage

Note that every p ∈ C is a connected coverage. The problem (1) is actually a weighted
connected coverage problem in which each sensor s has two weights uys and vys for s in
full-active phrase and semi-active phrase, respectively. In this section, we study approxima-
tions for the problem (1) by accumulating existing results in the literature. To do so, we first
show the existence of polynomial-time (4 + ε)-approximation for the weighted coverage
problem as follows: Consider a set T of targets and a set S of sensors in the Euclidean plane.
All sensors have the same sensing radius Rs = 1. Each sensor a nonnegative weight. Weights
for different sensors may be different. The problem is to find a minimum-weight subset of
sensors such that all targets are sensed by at least one chosen sensor.

There are two interesting special cases. In the first special case, all targets lie in a squre Q
with edge length

√
2/2 and all sensors lie outside of the square Q. Huang et al. [9] proved

an important property of optimal solution in this case.

Lemma 5 Let A, B, L , R be four areas outside of Q as shown in Fig. 1. Then for each opti-
mal solution Optwc, there exist four target locations a, b, c, d such that every target lying
	up(a, b)∪	low(c, d) is covered by sensors in Optwc ∩ (A∪ B) and every target lying not
in 	up(a, b)∪	low(c, d) is covered by sensors in Optwc ∩ (L ∪ R) where 	up(a, b) is the
intersection of square Q and a facing-upper right angle with two edges parallel to diagonals
and passing through points a and b, respectively and 	low(c, d) is the intersection of square
Q and a facing-down right angle with two edges parallel to diagonals and passing through
c and d, respectively.

B

A

L R
a

b

c d

a
b

c d

Fig. 1 Areas A, B, L , R and 	up(a, b) and 	low(c, d) in Lemma 5
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Fig. 2 m horizontal stripes in
Lemma 5

1

2

m

In the second special case, all targets lie in a horizontal stripe and every sensor lies either
above the stripe or below the stripe. In this case, Ambühl et al. [1] showed the existence
of polynomial-time algorithm to compute the optimal solution. Motivated from this fact,
Erlebach and Mihalák [6] showed the following result.

Lemma 6 Consider m horizontal stripes each with width
√

2/2 as shown in Fig. 2 for a con-
stant m. Suppose all targets lie in those stripes and all sensors have sensing radius Rs = 1.
Then there exists a polynomial-time 2-approximation for the weighted coverage problem with
constraint that each target is allowed to be covered only by sensors lying either above or
below the stripe where the target lies.

With above lemmas, we are ready to show the following.

Theorem 7 There exists a polynomial-time (4+ε)-approximation for the weighted coverage
problem in case that all targets and all sensors lie in the Euclidean plane and all sensors
have the same sensing radius Rc = 1.

Proof First, consider a fixed integer m > 0 and an m ×m grid, called a block, consisting of
m2 cells each of which is a square with edge length

√
2/2. Suppose all targets lie in a block.

In this case, we show that there exists a polynomial-time 4-approximation for the weighted
coverage problem.

For simplicity, we will employ “guess” in our statement. We will make at most 4m2 + 1
guesses, each from a pool of polynomial size. Therefore, the number of possibilities for the
guessed result is bounded by a polynomial and hence we may implement those guesses by
enumerating all possibilities in polynomial-time.

Let Optwc be an optimal solution of the weighted coverage problem. We first guess the
set Q of all cells each not containing any sensor in Optwc.

For each Q �∈ Q, we guess a sensor s(Q) ∈ Opt ∩ Q. It is clear that s(Q) covers all
targets in Q. Denote S′ = {s(Q) | Q �∈ Q}. Also, denote by T ′ the set of all targets not
covered by any s(Q) ∈ S′.

For each Q ∈ Q, we guess four points a, b, c, d and denote

H(Q) = T ′ ∩ (	up(a, b) ∪	low(c, d)),

V (Q) = T ′ ∩ (Q − (	up(a, b) ∪	low(c, d)).
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Consider the m ×m block as union of m horizontal stripes each consisting of m cells. Then
Optwc− S′ covers all targets in ∪Q∈Q H(Q) under constaint that each target is allowed to be
covered by a sensor lying either above or below the stripe containing the target. By Lemma
6, within a polynomial-time, we can find a subset S(H) of sensors such that

weight (S(H)) ≤ 2 · weight (Optwc − S′)

and S(H) covers all targets in ∪Q∈Q H(Q). Similarly, in polynomial-time, we can find a
subset S(V ) of sensors such that

weight (S(V )) ≤ 2 · weight (Optwc − S′)

and S(V ) covers all targets in ∪Q∈QV (Q). Now, S(H) ∪ S(V ) ∪ S′ covers all targets and
their total weight is at most

4 · weight (Optwc − S′)+ weight (S′) ≤ weight (Optwc).

Finally, by employing double partition (see [4]) and shifting techniques [2,8], we can
obtain a polynomial-time (4 + ε)-approximation for the weighted coverage problem in the
case described in theorem. ��

A graph is called a unit disk graph if all nodes lie in the Euclidean plane and two nodes
have an edge between them if and only if their distance is at most one. Given a unit disk
graph G = (V, E) with nonnegative node-weight w : V → R+s, and a node subset P , find
the minimum-weight node subset U such that P ∪U induced a connected subgraph, i.e., G
contains a subtree with node set P∪U . This is called the node-weighted Steiner tree problem
in unit disk graphs. Zou et al. [16] showed the following.

Lemma 8 The node-weighted Steiner tree problem in unit disk graphs has a polynomial-time
3.875-approximation.

Zhang and Hou [14] first study the connected coverage in case that the communication
radius is at least twice of sensing radius and showed that in such a case, for area coverage, the
coverage implies the connectivity, i.e., if the required area is covered, then selected sensors
induce a connected subgraph of input wireless sensor networks. This is not true for target
coverage. However, with Lemma 8, we can still obtain a nice result on the problem (1) in
this case.

Theorem 9 The problem (1) has polynomial-time (7.875+ε)-approximations for any ε > 0
when all targets and sensors lie in the Euclidean plane and all sensors have the same sensing
radius Rs and the same communication radius Rc with Rc ≥ 2Rs.

Proof Let A be a (4+ ε)-approximation solution produced by a polynomial-time algorithm
for the weighted coverage problem with weight ysu for each sensor s. Then

∑

s∈A

ysu ≤ (4+ ε)opt(1)

where opt(1) is the objective function value of optimal solution for the problem (1). Since
Rc ≥ 2Rs, A∪Opt(1) induces a connected subgraph of input wireless sensor network. Now,
assign each sensor s with weight ysv, find a polynomial-time 3.875-approximation solution
B for the node-weighted Steiner tree problem. Then

∑

s∈B

ysv ≤ 3.875 ·
∑

s∈Opt(1)

ysv ≤ 3.875 · opt(1)
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Therefore,
∑

s∈A

ysu +
∑

s∈B

ysv ≤ (7.875+ ε)opt(1).

��
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