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Abstract. A virtual backbone of a wireless network is a connected sub-
set of nodes responsible for routing messages in the network. A node
in the subset is likely to be exhausted much faster than the others due
to its heavy duties. This situation can be more aggravated if the node
uses higher communication power to form the virtual backbone. In this
paper, we introduce the minimum total communication power connected
dominating set (MTCPCDS) problem, whose goal is to compute a virtual
backbone with minimum total communication power. We show this prob-
lem is NP-hard and propose two distributed algorithms. Especially, the
first algorithm, MST-MTCPCDS, has a worst case performance guar-
antee. A simulations is conducted to evaluate the performance of our
algorithms.

1 Introduction

A virtual backbone (VB) of a wireless network is a connected subset of nodes
such that each node outside the subset is adjacent to a node in the subset. It
is well-known that the substructure can be exploited to improve efficiency of
wireless networks. A VB causes less overhead and becomes more effective if its
size is small. The minimum connected dominating set (MCDS) problem is to
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find a connected subset of nodes such that all nodes outside the subset has a
neighbor in the subset, and frequently used to compute a quality VB. Since
it is NP-hard, several approximation algorithms [1–3] and a full polynomial-
time approximation scheme (FPTAS) [4] are introduced for MCDS in unit disk
graph (UDG). In [5–7], the authors introduced distributed algorithms for MCDS.
In [8], Kim et al. studied MCDS in unit ball graph (UBG). In [9], Thai et al.
studied MCDS in disk graph (DG). The minimum node-weight dominating set
(or connected dominating set) problem is also extensively studied [10–13].

Due to their heavy duties, the nodes in a VB are likely to be exhausted
much faster than the other nodes. In addition, this situation can be further
aggravated if the nodes use higher communication power to form the VB. Based
on this observation, we claim a VB with smaller total (or equivalently average)
communication power to form a CDS is more energy-efficient. In the literature,
topology control of a wireless network via communication power adjustment
is frequently used to improve the energy-efficiency of a protocol running over
the network without compromising its performance [14–17]. To the best of our
knowledge, however, no effort has been made to find a CDS in a wireless network
of nodes with adjustable communication power, and our work is the first one
making an effort toward this direction. In fact, it has been implicitly assumed
that every node of a wireless network has a fixed transmission power when
computing a VB.

In this paper, we introduce the minimum total communication power con-
nected dominating set (MTCPCDS) problem, whose goal is to find a CDS of a
wireless network such that the sum of communication power of the nodes in the
CDS becomes minimum. The formal definition of MTCPCDS is in Definition 1.
Note that MTCPCDS problem can be considered as a generalization of the
problem models in [10–13]. The summary of the contributions is as follow. First,
we propose MTCPCDS and show it is NP-hard. Second, we introduce a simple
distributed approximation algorithm, a minimum spanning tree (MST) based
distributed algorithm for MTCPCDS (MST-MTCPCDS), prove its performance
ratio, and analyze its time and message complexities. Third, we introduce a new
greedy heuristic algorithm for MTCPCDS (GREEDY-MTCPCDS), and analyze
its time and message complexities. At last, we study the average performance of
the proposed algorithms via simulation.

The rest of this paper is organized as follows. Section 2 presents the notations,
definitions, and important assumptions. Section 3 and Section 4 introduce MST-
MTCPCDS and GREEDY-MTCPCDS, respectively. Our simulation result and
corresponding discussions are given in Section 5. Finally, Section 6 concludes
this paper.

2 Notations, Assumptions, and Problem Definition

In this paper, V is the set of the nodes in a given wireless network and n
is the number of the nodes. Given V and corresponding communication power
assignment of the nodes, G[V ] is the communication graph induced by the nodes.
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For simplicity, we will use G = (V,E) to represent the communication graph.
Therefore, the meaning of G is highly dependent on the context. G(V,E) is a
communication graph with a node set V and an edge set E. In many cases, a
graph in this paper is edge-weighted and we use wE(u, v) to represent the edge
weight between two nodes u, v ∈ V . Each node u can adjust its communication
power p(u) such that 0 ≤ p(u) ≤ pmax(u), where pmax(u) is the maximum
communication power of u. Pmax =

⋃
u∈V pmax(u).

As like [15–17], we assume the energy E consumed to transmit a bit of message
is E = β · dα, where d is the travel distance of the message, α is a power attenu-
ation factor, a constant between 2 and 5, and β is some constant. Hopdist(u, v)
and Eucdist(u, v) are the hop and euclidean distance between u and v, respec-
tively.

Definition 1 (MTCPCDS). Given a pair 〈V, Pmax〉, MTCPCDS is to deter-
mine the communication power of each node and find a subset D ⊆ V such that
1) each node is either in D or is (bidirectionally) connected to a node in D, 2)
G[D] is connected, and 3) the total communication power assigned to D is min-
imum. More formally, it is to find 〈D ⊆ V, {p(u)|u ∈ D}〉 such that 1) ∀u ∈ D,
0 < p(u) ≤ pmax(u), 2) both of G(D,E1) and G(V,E1 ∪ E2) are bidirectionally
connected, where E1 = {(u, v)|min{p(u), p(v)} ≥ β · Eucdist(u, v)α, ∀u, v ∈ D},
and E2 = {(u, v)|min{p(u), pmax(v)} ≥ β · Eucdist(u, v)α, ∀u ∈ D, v /∈ D}, and
3)

∑
v∈D p(v) is minimum, respectively.

Theorem 1. The MTCPCDS problem is NP-hard.

Proof. Imagine a grid graph such that the euclidean distance between any two
neighbors is exactly 1. Clearly, such grid graph is a special case of UDG. Next,
consider a subclass of MTCPCDS defined over the grid graph such that 1)
pmax(v) = 1 for all v ∈ V . In such grid graph, the subclass of MTCPCDS
is equivalent to MCDS since the power level of each node in an optimal solution
of the subclass has to be either 0 or 1. (the power level of a node is 0 means
the node is not in the CDS. Otherwise, it is in the CDS.) By [18], MCDS is
still NP-hard even in such grid graph. Therefore, the subclass of MTCPCDS is
also NP-hard. As a result, MTCPCDS without the constraint on the maximum
power level of each node is NP-hard in general UDGs.

3 A MST Based Approximation Algorithm for
MTCPCDS (MST-MTCPCDS)

Now, we introduce MST-MTCPCDS. Given 〈V, Pmax〉, the algorithm performs
the following steps in a sequential order.

1. Constructs an edge-weighted auxiliary graph GEW
aux = (V EW

aux , EEW
aux ) such

that for any two node pair u and v in V , (u, v) is in EEW
aux if and only if

dα(u, v) ≤ min{pmax(vi), pmax(vj)}. Also, wE(u, v) = dα(u, v) is assigned
as the edge weight of (u, v). Note that such construction can be done in a
fully distributed (localized) manner by letting each node exchange a “hello”
message with its neighbors.
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2. Finds an MST Tmst of GEW
aux using an existing distributed MST algorithm

such as Kruskal’s algorithm. Suppose D is the set of non-leaf nodes in Tmst.
Clearly, D is a CDS of GEW

aux since GEW
aux [D] is connected and all nodes in

V \D is adjacent to at least one node in D.
3. Assign the communication power of each node as follows: i) For each v ∈ D,

we set p(v) to the maximum edge weight between v and any u such that v
and u are adjacent in Tmst, and ii) for each node w ∈ V \ D, we need to
adjust w’s power properly so that it can send a message to at least one node
in D.

Theorem 2. The running time of MST-MTCPCDS is O(n2).

Proof. The first step takes O(n2) time to construct GEW
aux and assign a weight

on each edge of it. The second step takes O(n2) time to compute an MST Tmst

using Kruskal’s algorithm and find a set D of non-leaf nodes of Tmst. The last
step takes O(|D| ·Δ) time to determine the communication power level of each
node in D by observing its neighbors, where Δ is the maximum degree of GEW

aux .
As a result, the running time of MST-MTCPCDS is O(n2).

Theorem 3. The approximation ratio of MST-MTCPCDS is 2 Δ for the
MTCPCDS problem.

Proof. Suppose T is any spanning tree in GEW
aux . Let NL(T ) be the set of non-leaf

nodes in T and E(T ) be the edges in T . We denote the weight of an edge e and
the communication power level of node v by wE(e) and p(v), respectively. Since
each edge is connecting two end points, wE(e) can be included in

∑
v∈NL(T ) p(v)

at most two times. Therefore, we have
∑

v∈NL(T ) p(v) ≤ 2
∑

e∈E(T ) wE(e), and
∑

e∈E(T ) wE(e) ≤ Δ
∑

v∈NL(T )

max
{(v,u)∈T |∀u∈V }

dα(v, u) = Δ
∑

v∈NL(T )

p(v), where Δ

is the maximum degree of GEW
aux .

Now, suppose D∗ is an optimal solution of the MTCPCDS problem. Then,
there should be a spanning tree T ∗ of D∗ on GEW

aux . Also, suppose D is an output
of our algorithm given an input GEW

aux , and T is a corresponding spanning tree of
D. Then, we can observe 1) in MST-MTCPCDS, T is an MST of GEW

aux . Since T
∗

is a spanning tree, we have
∑

e∈E(T ) wE(e) ≤
∑

e∈E(T∗) wE(e), and 2) D∗ has
to be a set of non-leaf nodes of T ∗. Otherwise, we can remove a leaf node from
D∗ which contradicts to our assumption that D∗ is optimal. Therefore, we have∑

v∈NL(T∗) p(v) =
∑

v∈D∗ p(v). As a result,
∑

v∈D p(v) ≤ 2
∑

e∈E(T ) wE(e) ≤
2
∑

e∈E(T∗) wE(e) ≤ 2Δ
∑

v∈NL(T∗) p(v) = 2Δ
∑

v∈D∗ p(v), and the theorem
holds true.

4 GREEDY-MTCPCDS: A New Greedy Heuristic
Algorithm for MTCPCDS

GREEDY-MTCPCDS consists of two distinct phases. In the first phase, given
a MTCPCDS problem instance, the algorithm computes a GEW

aux in a distributed
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manner as MST-MTCPCDS does. Therefore, no node needs to keep the global
information of GEW

aux . In the second phase, it applies a distributed greedy strategy
to GEW

aux . At the beginning of the second phase, the color of each node is white,
but later becomes gray or black. At the end, the set of black nodes forms a CDS.

Given a node vi ∈ V and its current communication power p(vi), the cost to
increase its communication power to pnew(vi) is defined as

Cost(p(vi), pnew(vi)) = (pnew(vi)− p(vi))/(|N [pnew(vi)]|),
where N [pnew(vi)] is the set of white nodes in GEW

aux dominated by vi using
the new communication power pnew(vi). In case that |N [pnew(vi)]| = 0, which
implies that vi cannot reach any white neighbor even using its maximum commu-
nication power, Cost(p(vi), pnew(vi)) returns −1. Intuitively, this cost function
is representing the cost-efficiency of increasing the communication power of vi
from p(vi) to pnew(vi).

The second phase consists of multiple rounds. Each round is initiated by a
current root rc. The very first round is started by electing a new current root rc
with minimum Costbest(rc), where

Costbest(rc) = min
p(rc)<pnew(rc)≤pmax(rc)

{Cost(p(rc), pnew(rc))}.

Once elected, the rc increases its communication power to Costbest(rc). Note
that for any rc, the effective number of choices for pnew(rc) is bounded by Δ,
which is the maximum degree of GEW

aux . Then, rc becomes a black node and each
(white) node to which rc can send a signal using the new communication power
pnew(rc) becomes gray. Note that those gray nodes are some of the neighbors of
rc in GEW

aux . Next, rc constructs a node set X of the gray nodes, selects the node
vi ∈ X with minimum Costbest(vi) value, and sends an invitation to vi with X
and W =

⋃
vj∈X Costbest(vj).

On receiving the invitation, vi becomes a new rc and repeats the round.
Generally speaking, after a new rc is elected, followings are performed in a
sequential order.

1. rc becomes a black node, adjusts its communication power to pnew(rc) such
that Costbest(rc) can be achieved. All of white neighbors reachable from rc
using the new communication power become gray. Then, rc calculates X ′

and W ′, where X ′ is the set of gray nodes at most two hops far from rc and
W ′ is the set of Costbest(vi) for each vi ∈ X ′. Then, merges those with old X
and W which inherited from the previous root (i.e. X ← X

⋃
X ′ and W ←

W
⋃
W ′). While merging, any new information overwrites its old version.

To optimize the size of X and W , for each vj ∈ X , if Costbest(vj) = −1, we
can remove vj from X and Costbest(vj) from W since vj does not have any
reachable white node anymore.

2. Once the merged, the new rc picks a node v ∈ X with the minimum
Costbest(v) value (which can be found from W within a linear time) as
the next rc. If X is empty, then all nodes should be either black or gray, and
thus rc terminates this phase. Otherwise, rc sends an invitation message to
another node v ∈ X with minimum Costbest(v) value.
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After the second phase, the set of black nodes and its corresponding power
assignments will be a CDS of GEW

aux . Now, we analyze the time and message
complexities of GREEDY-MTCPCDS.

Theorem 4. Both the time and message complexities of GREEDY-MTCPCDS
are O(|V |Δ2).

Proof. It take O(n2) time to obtain GEW
aux in the first phase. Now, we discuss

about the second phase. In each round, rc needs to collect the cost information
from every black and gray node within two hops. In detail, rc first sends the
query message to its direct neighbors using one broadcasting message and this
incurs O(1) time and takes O(1) messages. For each direct neighbor vi of rc, vi
needs to spend O(1) time and incur O(1) messages to broadcast the query to
its direct neighbors. Also, vi will take O(Δ) time and incur O(Δ) messages to
collect the cost information from its direct neighbors. To send this to the rc, it
will take O(1) time and generate O(1) messages. Therefore, both the time and
message complexities of one round is O(1) + O(Δ) · O(1 + Δ + 1) = O(Δ2).
Since we can have at most |V | rounds, the time and message complexities of
GREEDY-MTCPCDS are O(|V |Δ2).

5 Simulation Results and Analysis

To the best of our knowledge, there is no CDS computation algorithm adjusting
the communication power of each node. Therefore, we compare the average per-
formance of our algorithms with CDS-BD-D in [7], a typical MCDS algorithm.
The simulations are conducted over a 100×100 2-D space. We compare the total
communication power and the size of CDSs generated by the three algorithms
under different parameter settings. For each parameter setting, we obtain an
averaged result from 100 trials. In each trial, we randomly place n nodes over
the terrain. If the induced GEW

aux by the nodes is disconnected, we simply discard
it and generate a new one.

As we mentioned, the power model to send a message over a distance d is
E = β · dα. For simplicity, we normalize β = 1. We assume that the signal is
moving in the air and set α to 2. Then, the remaining tunable parameters in the
simulations are as follows:

1. The number of nodes n. We vary n from 80 to 200 to check the scalability
of the algorithms.

2. The interval of maximum power of each node [a, b]. In the simulation, the
maximum power of each node is generated from a normal distribution with
mean equal to a+b

2 and standard deviation equal to b−a
4 .

In Figure 1, we compare the averaged total communication power of CDSs gen-
erated by the three approaches. In Figure 1(a), 1(b), and 1(c), the maximum
communication power of each node is from [100, 400], [100, 900], and [400, 900],
respectively. For each interval, we vary the number of nodes from 80 to 200.
From this simulation results, we can clearly see both of MST-MTCPCDS and
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(a) The maximum power of each node is
randomly chosen between 100 to 400.
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(b) The maximum power of each node is
randomly chosen between 100 to 900.
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(c) The maximum power of each node is
randomly chosen between 400 to 900.

Fig. 1. Averaged total communication power of CDSs generated by CDS-BD-D, MST-
MTCPCDS, and GREEDY-MTCPCDS

GREEDY-MTCPCDS outperform CDS-BD-D in terms of the averaged total
communication power of CDSs. This is natural since CDS-BD-D was designed
for MCDS, not for MTCPCDS. We can also observe, while we did not prove the
worst case performance of GREEDY-MTCPCDS, GREEDY-MTCPCDS works
better than MST-MTCPCDS on average. Therefore, they are in a trade-off re-
lationship.

In Figure 2, we compare the performance of the three approaches using the
average size of CDSs, which is a traditional quality measurement for CDS. From
the simulation results, we can see that on average, the size of CDSs computed
by GREEDY-MTCPCDS is even better than that of CDSs generated by CDS-
BD-D, which is an approximation algorithm for the MCDS problem. Mean-
while, we can observe that CDS-BD-D works better than MST-MTCPCDS, but
this is understandable since MST-MTCPCDS is an approximation algorithm for
MTCPCDS, not for MCDS.

In conclusion, the three algorithms are in a very interesting trade-off rela-
tionship. CDS-BD-D is an approximation algorithm for MCDS and has a worst
case performance guarantee. MST-MTCPCDS is an approximation algorithm
for MTCPCDS and has a worst case performance guarantee. CDS-BD-D is bet-
ter than MST-MTCPCDS for MCDS, but MCDS is better than CDS-BD-D for
MTCPCDS. On the other hand, GREEDY-MTCPCDS is not an approximation
algorithm for any of the problems and has no worst case performance guarantee,
but on average, it outperforms the other two algorithms in both performance
metrics, the size and the total communication power.
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(b) The maximum power of each node is
randomly chosen between 100 to 900.
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randomly chosen between 400 to 900.

Fig. 2. Averaged size of CDSs generated by CDS-BD-D, MST-MTCPCDS, and
GREEDY-MTCPCDS

6 Conclusions and Future Work

In this paper, we proposed the minimum total communication power connected
dominating set (MTCPCDS) problem. In detail, given n nodes and their max-
imum communication powers, MTCPCDS is to determine each node’s commu-
nication power and to find a CDS of the network. We proved this problem is
NP-hard and proposed two distributed approaches. The first approach exploits
an existing distributed approximation algorithm for MST to solve MTCPCDS
and has a worst case performance guarantee. The second one is a simple greedy
algorithm and theoretically runs faster than the first one in a sparse graph. In
the extensive simulations, we saw that they are in a very interesting trade-off
relationship and produce quality solutions for MTCPCDS.

In [19], the authors studied a problem similar to MTCPCDS, but did not
consider the maximum communication power level of each node, and thus is
less realistic. In such a case, a constant factor approximation can be easily ob-
tained. However, for MTCPCDS with the maximum communication power level
constraint, we were only able to obtain a O(Δ) approximation. Therefore, ob-
taining a constant factor approximation of MTCPCDS is still open.

In this paper, we mostly focused on establishing a theoretical foundation of
the problem and its solutions. As a future work, we are interested in taking the
remaining energy level of each node into the consideration and try to improve
our approach so that it can actually help to extend the lifetime of CDS based
wireless networks.
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