
Energy-Efficient Roadside Unit Scheduling for Maintaining
Connectivity in Vehicle Ad-hoc Network

Feng Zou, Jiaofei Zhong
Dept. of Computer Science
University of Texas at Dallas

phenixflying@gmail.com,

fayzhong@utdallas.edu

Weili Wu, Ding-Zhu Du
Dept. of Computer Science
University of Texas at Dallas
{weiliwu, dzdu}@utdallas.edu

Junghoon Lee
Dept. of Computer Science

and Statistics
Jeju National University

jhlee@jejunu.ac.kr

ABSTRACT
Vehicle Ad-hoc Network (VANET) is a type of mobile ad-
hoc networks with highly dynamic topology. To address its
frequent network partition issue, recently a special kind of
infrastructure called the Roadside Unit (RSU) is proposed
to be deployed along the road to improve the VANET con-
nectivity. In this paper, we study the energy saving problem
in RSU scheduling. Given a set of deployed RSUs, our ob-
jective is to find the optimal schedule of turning them on
and off within a given time period so that the overall en-
ergy consumption of RSUs in the system is minimized while
the network connectivity is still maintained. We divide this
problem into two subproblems called the snapshot scheduling
problem and the snapshot selection problem. The snapshot
scheduling problem decides the minimum number of active
RSUs needed for a snapshot of the VANET at a given time
point, while the snapshot selection problem decides a se-
quence of time points on which the snapshot must be up-
dated. By addressing these two subproblems, we present
a complete solution for our energy-efficient RSU scheduling.
We present our theoretical analysis and experimental results
to show that our algorithms can achieve a significant energy
saving while still maintaining the VANET connectivity.

Keywords
Vehicle ad-hoc network, Energy-efficient, RSU scheduling,
Optimization

1. INTRODUCTION
As an emerging new type of mobile ad-hoc network, Ve-

hicle Ad-hoc Network (VANET) faces one crucial challenge:
its highly dynamic and partitioned characteristic severely
limits the speed and accuracy of data dissemination inside
the network. Even though each vehicle can exchange infor-
mation with others when within their communication ranges,
in order to successfully disseminate necessary information all
over the network, every pair of vehicles within the VANET
has to be connected. However, in real-world scenarios, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICUIMC '11, February 21-23, 2011, Seoul, Korea
Copyright 2011 ACM 978-1-4503-0571-6 ...$10.00.

group of vehicles may need to wait for a long time or even
cannot communicate with other groups of vehicles forever
in the VANET. This obviously affects the efficiency of in-
formation exchange. The situation becomes even worse in
large-scale VANET, since the network will have a much
higher possibility to be disconnected. This highly parti-
tioned feature raises problems in many other research ar-
eas of VANET, such as maintaining the data freshness and
monitoring the real-time traffic. The improved network con-
nectivity will also reduce the difficulties of these problems.

Considering this underlying highly-partitioned character-
istic of VANET, a special kind of infrastructure called the
Roadside Unit(RSU) is introduced recently. RSUs are static
devices that can be deployed independently on roadside or
installed together with traffic lights, and they are capa-
ble of large area sensing and communication. With RSUs
such as 802.11 access points, vehicles can either access data
stored in them or upload its own data. Previous research
work has shown that introducing these RSUs can allevi-
ate the network partition problem, therefore greatly im-
prove the information dissemination and data aggregation
in VANET [12]. However, since most of RSUs are battery-
powered, how to schedule them to achieve minimum energy
consumption while still maintaining the network connectiv-
ity is still a challenging problem and has not received suffi-
cient attentions.

In this paper, we assume that all the RSUs are already
deployed in the network and a full coverage of the network
can be achieved by setting all of them to be active. We for-
malize the energy saving problem in RSU scheduling as an
optimization problem. Our objective is to find the optimal
schedule of turning on and off the deployed RSUs within
a given time period so that the total energy consumption
in that period is minimized while the connectivity of the
VANET is still maintained. We divide this optimization
problem into two subproblems called the snapshot scheduling
problem and the snapshot selection problem. The snapshot
scheduling problem is reduced to the Steiner Tree with Min-
imum Number of Steiner Points (STP-MSP) problem and
it decides the minimum number of active RSUs needed for
a snapshot of the VANET at a given time point; The snap-
shot selection problem decides the sequence of time points
on which the snapshot must be updated thus to maintain
the network connectivity. The combination of these two
subproblems presents a complete framework for our energy-
efficient RSU scheduling.

The rest of this paper is organized as follows. Section 2
briefly summarizes the related works, and section 3 describes

the details of our optimization problem from the perspective
of graph theory. We explain our models and assumptions
in Section 4. Section 5 presents our complete solution and
gives the theoretical analysis of the two subproblems. In
section 6, we evaluate the performance of our algorithms
through experiments in the downtown area in Dallas. We
conclude the paper in section 7 and discuss the future work.

2. RELATED WORK
Research works related to the RSUs in the literature can

be generally classified into the following three categories:
the vehicle-RSU data access scheduling, the communication
setup between vehicle and RSU, and the RSU placement.
In this section, we describe several previous works related to
our work and give a brief review of the Steiner tree with Min-
imum Number of Steiner Point (STP-MSP) problem which
is the theoretical basis of our snapshot scheduling problem.

2.1 RSU Scheduling
The vehicle-RSU data access scheduling problem is to de-

sign efficient scheduling algorithms for the servers on RSUs
to handle data access requests from moving vehicles in the
network. Most of existing schemes do not consider either
the time constraints or the data quality. Zhang et al. [17]
present a scheduling scheme called D ∗ S considering both
of these factors. Moreover, D ∗ S is optimized and a new
scheme called D ∗ S/N is proposed. In their paper, they
also study the impact of data staleness and present a two-
step scheduling scheme to provide a balance between serving
download and update requests.

Lots of effort has also been devoted in the study of vehicle-
to-RSU communication. Bohm et al. [?] target at the
handover and connection setup between a vehicle and an
RSU, in order to reduce the delay of waiting for access to
the wireless communication channel. In their system, RSU
can produce a communication schedule for all vehicles in its
transmission range and poll these vehicles for data. They
show that with limited overhead, this mechanism still allows
MAC protocols to support various safe-critical applications
in a densely highway scenario.

Considering the highly partitioned nature of VANET, re-
searchers also study the identification of RSU positions. In
their paper, Lochert et al.[12] present their solution of RSU
placement for a VANET traffic information system using a
genetic algorithm. In order to cope with the highly parti-
tioned nature of a VANET in an early deployment stage,
they identify good spots for RSUs from a set of possible
positions that are initially given. However, their choice for
the best set of RSUs highly depends on the traffic situation
simulated in the experiments. As different traffic situations
might require different sets of best RSU spots, whether the
selected set of RSUs could perform well in different traffic
situations is not guaranteed in their paper. Moreover, even
though the information dissemination in VANET could be
improved by deploying a set of RSUs at the selected spots,
the network partition problem is still unavoidable. Consid-
ering from this perspective, the genetic algorithm only helps
alleviate the network partition problem but prevent it.

Different from all aforementioned problems, in this pa-
per we investigate the scheduling of RSUs from the connec-
tivity and energy saving perspectives. We assume that a
set of RSUs are deployed initially providing full coverage of
the designated area. Our objective is to design an efficient

scheduling scheme for all the deployed RSUs so that at each
time point within a given time period, the connectivity of
all the vehicles in the network is maintained and the energy
consumption during this period is minimized. To the best
of our knowledge, our work is the first to study this problem
in the literature.

2.2 STP-MSP Problem
As we have mentioned, the STP-MSP problem is highly

related to one of our subproblems, the snapshot scheduling
problem. Therefore, we briefly describe this problem as part
of the related work here. Given a graph G = (V, E) with
a weight function w on E and a subset S, the Steiner tree
problem (STP) is to find a minimum weight subgraph of G
interconnecting all nodes in S. We call the set S as terminal
set. For any Steiner tree T interconnecting S and a node
u ∈ V (T), we call u as a terminal node if u ∈ S. Other-
wise, we call it as a Steiner node. The Steiner tree problem,
which is of great interest nowadays, is a classic connectivity
problem in networks. This problem is known to be NP-hard
in most metrics[8]. Lots of effort has been devoted to study
the approximation algorithms for this problem [1, 9, ?, 14,
?] and have successfully achieved constant ratios, the best
known result among which is ρ = 1 + ln 3

2
≈ 1.55 [14].

The Steiner tree problem with minimum number of Steiner
points, denoted by STP-MSP for short, is a variation of
Steiner tree problem. It is defined as follows: Given a set S
of n terminals, STP-MSP asks for a tree T interconnecting
a superset of S such that the number of Steiner points in T
is minimized. There are two versions of STP-MSP problem.
One is in graphs and another is in plane (e.g. Euclidean
plane). The difference between them is that in graphs, all
the vertices contained in T should belong to vertex set V
of G. While in the plane, there is no restriction for that.
Steiner points could be any point in the plane. Existing ap-
proximation algorithms for the STP-MSP problem [5, 7, 11]
all focus on STP-MSP in Euclidean plane and have achieved
constant approximation ratios. While few algorithms are de-
signed exactly for the STP-MSP problem in graphs as far as
we know.

3. PROBLEM DESCRIPTION
The optimization problem we study in this paper can be

described as following: Given a time period [0, T] and a set
of deployed RSUs R, which are deployed along the roads and
cover all the interested area, we look for a schedule of mode
switch (on/off) for all the RSUs in R during the time pe-
riod [0, T], so that the vehicles in the network are connected
through RSUs at all time in the period and the energy con-
sumption of RSUs during this time period is minimized as
well.

We consider this problem from the perspective of graph
theory. To begin with, we introduce a Virtual Control Node(VCN)
into the VANET, which is considered connecting to all the
RSUs through wires. If taking the vehicles in the network
together with all RSUs and the VCN as the vertex set of
a graph, we could derive a graph called temporal graph for
the VANET. The temporal graph is a kind of graph in which
each edge has its associated temporal feature. This tempo-
ral feature is described using temporal vector and temporal
duple.

v3

([1, 2], [4, 5], [6, 7]) ([1, 3], [4, 5])

([1, 3], [4, 6])

([1, 3], [4, 5])

([2
, 3], [

5, 6])([
1,

 3
])

Temporal Graph :TG v2

v1

v4 v5

v 2

v 1 v 3

v 4 v 5

Snapshot G (4) :TG (4)

Figure 1: An example of temporal graph and snapshot

Definition 1. Temporal Vector: A temporal vector s is
consisted of a set of time intervals si. Each time interval
represents a close time period (e.g., [ti1, ti2]) and none of
the time-intervals in the same temporal vector overlaps with
each other. Note that the temporal vector s could be an
empty set.

Definition 2. Temporal Duple: A temporal duple D is
a duple including one temporal vector. We will use the nota-
tion (u, v) : s, where u and v represent two distinct objects
and s is the temporal vector.

Now, based on the definitions of temporal vector and tem-
poral duple, we can define the Temporal Graph as follows.

Definition 3. Temporal Graph: A temporal graph GT

is a set of temporal duples {D1, D2, . . . , Dk}. Vertex pairs
that are not included in this set are considered to have no
edges interconnecting them at any time.

In the temporal graph GT of the VANET, there exists one
edge between two vehicles in the graph at time t if they are
within each other’s communication range at that time point.
This edge is denoted as an effective edge at time t otherwise
a noneffective edge. And there exists one edge connecting
a vehicle and an RSU at time t if the vehicle could directly
communicate with this RSU. It’s obvious that all the edges
between RSUs and the VCN have the same temporal vector
[0, T].

Further, for each temporal graph GT , we define its snap-
shot at time t as follows.

Definition 4. Snapshot: A snapshot GT (t) of a temporal
graph GT at time t contains the same vertices as GT , but
only effective edges at time t in GT .

Figure 1 presents an illustrative example of the temporal
graph and its associated snapshot at time t = 4. At time 4,
edges (v1,v2),(v1,v4),(v2,v5) and (v2,v3) are effective edges.

Considering the set containing vertices representing vehi-
cles and the vertex representing VCN as the terminal set S
in this temporal graph GT , our optimization problem could

be further described as to find the minimum number of RSUs
in R to be activated at every time point t in the time period
[0, T] such that every vertex in the set S is connected and
the energy consumption of the RSUs is minimized. In order
to solve this problem, we divide it into two subproblems.

The first subproblem is called Snapshot Scheduling prob-
lem, which is to minimize the number of active RSUs needed
for a snapshot GT (t), so that every vertex in the set S is con-
nected and the energy consumption of RSUs at time t is min-
imized. Here we assume that there is no energy consump-
tion during the RSU mode switch. The Snapshot Scheduling
problem is highly related to the STP-MSP problem.

As it is impractical and expensive to adjust the RSUs’
mode at every time point t, our second subproblem is to
decide the sequence of necessary time points on which the
snapshot must be updated thus to maintain the network
connectivity. We call it Snapshot Selection problem.

In the following, we will first describe our system model in
Section 4 and present our solutions for the Snapshot Schedul-
ing problem and Snapshot Selection problem in Section 5.

4. SYSTEM MODELS AND ASSUMPTIONS
Before introduce the main idea of our energy-efficient RSU

scheduling, in this section, we summarize the assumptions
and describe the models we applied in this paper. First, we
study the problem in a discrete time system. We assume
that all RSUs are powered through batteries and they are
homogeneous. All RSUs have the same sensing and commu-
nication range and they can communicate with each other
as well as the VCN through a backbone network [12]. Each
RSU can switch between two different modes: active mode
and sleep mode. For simplicity, We assume that there is no
energy consumption when the RSU is in the sleep mode and
during the mode switch. All possible wireless interferences
are also ignored.

4.1 Roadside Units Deployment Model
We assume that a certain amount of RSUs has already

been deployed along the roads, and the area that we are in-
terested can be fully covered when all these RSUs are active.
Each vehicle on the road can communicate with at least one
RSU at any time. They could download information from
RSUs and also upload information to them. This is quite
different from the model used in [12], where the placement
of RSUs does not guarantee the full coverage of the area.

Figure 2 gives an illustration of our model taking one road
segment as an example. Assume that the communication
range of every RSU equals to rc. If the length of this road
segment is L, then we can deploy the RSUs along the road
at points {rc, 3 ·rc, . . . , k ·rc, . . . }, where k = 2 ·j+1(0 ≤ j ≤

L
2·rc

). If the length of the road is not exactly multiples of the
value 2·rc, then an extra RSU will be deployed at the ending
point of the road. Compared with the deployment model
in [12], this grid deployment of RSUs could guarantee the
coverage of all the roads as well as vehicles on the roads in
the target area. Besides, comparing with those models which
deploy RSUs irregularly in the area (e.g. places away from
roads), such deployment also reduce the total management
cost.

4.2 Vehicle Mobility Model
The construction of the temporal graph of the VANET

is an essential step in our scheme, and the difficulty of its

Figure 2: An example of the RSU deployment

construction highly depends on the mobility model we adopt
in the system. The more complicated the mobility model is,
the more difficult the construction will be.

There are many mobility models that are specifically de-
signed for ad-hoc network like VANET. A brief taxonomy is
given in [2], and [4] provides a detailed survey and presents
simulation-based comparisons among different mobility mod-
els.

Random Waypoint model [3, 10, 15, 6] is one of the most
widely used mobility models for ad-hoc networks. It has
been proven to be an effective approximation for simulating
the realistic motion of vehicles in VANET [?, 16, 13]. [16]
introduces a variation of the Random Waypoint model and
constrains the motion of each vehicle to be along the roads.
It calculates the route from source to a random destination
using Dijkstra’s single source shortest path algorithm, trav-
els along the path until reaches its destination. Once a ve-
hicle reaches its destination, it chooses another random des-
tination and repeats this process. [16] shows through their
experimental results that the performance of this model is
comparable with the classic Random Waypoint model and
is more practical in real-world scenarios as well.

We adopt this mobility model in our paper. We let each
vehicle start from a random source Vs to a random desti-
nation Vd. The route that it follows is calculated before it
starts traveling and is based on its knowledge of the area.
We assume that every vehicle in our system travels with its
chosen speed v all the way until it reaches the destination.
After that, it randomly chooses another destination and re-
peats this process again. It is easy to observe that under this
mobility model, as long as each vehicle reports its speed and
destination to RSUs that it encounters on the roads, RSUs
can easily predicate its movement.

5. ENERGY-EFFICIENT ROADSIDE UNIT
SCHEDULING

In this section, we shall describe the details of our ap-
proach for constructing the RSU schedule to minimize their
total energy consumption while still maintaining the connec-
tivity in the VANET. As we have explained, the optimiza-
tion problem could be divided into two subproblems. The
snapshot selection problem decides a series of necessary time
points for RSUs to change their modes according to the tem-
poral graph of the VANET; The snapshot scheduling prob-
lem selects the minimum number of RSUs to be activated
from the snapshot of the VANET at a specific time point.
For the ease of readers, we will first present the complete

framework of our approach, and then provide the solutions
for the two subproblems in detail.

5.1 Framework
In our approach, initially we set all the RSUs to be active.

Each vehicle in the network updates its information includ-
ing the current position, speed, destination and the route to
follow, to the nearby RSUs at time 0. Here we assume that
all the vehicles have the information of their routes as soon
as they decide their destinations. With all these information
collected by the RSUs, the VCN could calculate the tempo-
ral graph of the VANET for the given time period [0, T].
This temporal graph will be updated whenever an existing
vehicle starts a new route.

Next, taking the temporal graph as the input for the snap-
shot selection problem, we first find a set of time points
P = {t1, t2, . . . , tm} when RSUs adjustment is necessary.
If later at some time point t in [0, T], the temporal graph
is updated, we will also update the set P at t accordingly.
Therefore, the snapshot selection involves not only selecting
snapshot initially, also updating the set of selected snapshots
in the runtime.

for each time point ti(1 ≤ i ≤ m) in P , we provide an
algorithm for determining which RSUs will be turned on or
turned off based on the snapshot GT (ti). Note that we also
construct a schedule for turn off the unnecessary RSUs at
the initial time point 0. Only those RSUs selected based
on the snapshot GT (0) will be kept active until the next
time point t1 in P if the temporal graph of the network is
not updated during [0, t1]. This approach will guarantee the
connectivity of the VANET at any time t in the period [0, T],
and minimize the total energy consumption for the RSUs.

In the following sections, we will explain in detail how the
two subproblems: the snapshot selection problem and the
snapshot scheduling problem are solved.

5.2 Snapshot Selection
We need to answer two questions to address the snapshot

selection problem. 1) How to select the appropriate time
points for necessary RSUs adjustment based on a given tem-
poral graph? and 2) how to modify the selected time points
for RSUs adjustment when the temporal graph is updated?
Before answering these two questions, let’s first study some
characteristics of the temporal graph. Given a temporal
graph GT , we have the following observations:

1. The set of appropriate time points for RSUs adjust-
ment is a subset of the collection of distinct starting
points and ending points of the time intervals con-
tained in the temporal vectors in GT .

2. Not every time point contained in this collection is an
appropriate time point for RSUs adjustment.

Intuitively, RSUs adjustment is only necessary when the
network partition situation changes. It is obvious that this
change happens either when some edges become effective,
or some edges become noneffective in the temporal graph.
Thus for every time interval [tk1, tk2] of an edge, both the
starting time tk1 and ending time tk1 are possible candidates
of time points for necessary RSUs scheduling adjustment,
but only those that involve a network partition change will
be included in P .

Algorithm 1 Snapshot Selection - Initialization (GT)

1: Initialize set P as an empty set.
2: for each edge e in the graph GT do
3: for each time interval [tk1 , tk2] in the temporal vector

associated with e do
4: if tk1 is not contained in the P then
5: Add tk1 into P .
6: end if
7: if tk2 is not contained in the P then
8: Add tk2 into P .
9: end if
10: end for
11: end for
12: Sort the set P into a non-decreasing order {t1, . . . , tn}.
13: Set i = 1, and N = n.
14: while i < N do
15: Partition the subgraph of snapshots GT (ti) and GT (ti+1)
16: REMOVE = TRUE;
17: if partitions in GT (ti) and GT (ti+1) are different then
18: Set REMOVE = FALSE;
19: end if
20: if REMOVE == TRUE then
21: Remove ti+1 from P
22: Set i = i − 1 and N = n − 1
23: end if
24: i = i + 1
25: end while
26: Output set P .

With these two observations, we propose the following
snapshot selection algorithm using graph partitioning strat-
egy. We first select all the different time points ti from
the boundaries of the time intervals in the temporal graph
and set it to be P = {t1, t2, . . . , tn}. Then for each time
point in P , we extract its snapshot. By applying bread-
first-search(BFS) search on the snapshot, we partition it so
that any pair of connected vertices are put in the same par-
tition. Starting from the first pair of consecutive time points
t1 and t2 in P , we compare whether they have the same the
network partition. If their network partitions are the same,
t2 will be removed from P . If time t2 is removed, then we
will further compare t1 with t3; Otherwise, we will keep on
comparing t2 with t3. This process continues until we reach
the end of the sequence in P . The details of the approach
is summarized in Algorithm 1.

On the other hand, when an existing vehicle chooses a new
route, the temporal vector of existing edges in the temporal
graph will be updated. In this case, we need to update the
set P as well. The detailed process is presented in Algo-
rithm 2. It follows the similar strategy as in Algorithm 1.
In order to minimize the cost of each update, we will fully
utilize the set P we have calculated before the update. We
use P ′ to represent the newly introduced candidates of the
time points for RSU scheduling adjustment. Instead of com-
paring each pair of elements in the set P ′ ∪ P , we compare
each element t′i in P ′ with its closest neighbor t in P satis-
fying t ≤ t′i. Based on the graph partition information, we
can decide whether to add t′i into P or not.

5.3 Snapshot Scheduling
After determining the sequence of time points when the

snapshot of the VANET should be updated, the next step
is to decide the mode (active or sleep) of each RSU in the
VANET for each snapshot. The snapshot scheduling prob-

Algorithm 2 Snapshot Selection - Update (P, G′
T)

1: Initialize set P ′ to be empty.
2: for each newly updated edge e in the graph G′

T do
3: for each newly updated time interval [tstart, tend] in the

temporal vector associated with e do
4: if tstart is not contained in the P then
5: Add tstart into P ′.
6: end if
7: if tend is not contained in the P then
8: Add tend into P ′.
9: end if
10: end for
11: end for
12: Sort the set P ′ into a non-decreasing order {t1, . . . , tn}.
13: for Each time point t′ in P ′ do
14: // t the largest time point in P satisfying t ≤ t′.
15: Partition the subgraph of snapshots G′

T (t) and G′
T (t′)

16: REMOVE = TRUE;
17: if partitions in G′

T (t) and G′
T (t′) are different then

18: Set ADD = TRUE;
19: else
20: Set ADD = FALSE
21: end if
22: if ADD == TRUE then
23: Add t′ into P .
24: end if
25: end for
26: Output set P .

lem can be formalized as following. Given a snapshot GT (t) =
(V, E, S), where S is the set of vertices representing vehi-
cles as well as the VCN, we look for a subset R′ ⊆ V \ S,
so that the subgraph induced by the vertex set R′ ⋃ S in
graph G(t) is connected. It’s easy to observe that this sub-
problem is an instance of the STP-MSP problem. Recall
that the STP-MSP problem is to look for the Steiner tree
with the minimum number of steiner nodes interconnecting
the given terminal set. As most of the existing work for the
STP-MSP problem focus on Euclidean plane, in this section,
we propose an approximation algorithm for the STP-MSP
problem in the general graphs and give a theoretical per-
formance bound based on the maximum degree of the final
Steiner tree.

In our algorithm, we first introduce a weight function
w : V → {0, 1} into the snapshot GT (t), assigning dif-
ferent weights to different kinds of vertices. Each vertex
in the terminal set S is given the same weight of 0, and
every other vertex in the graph has the same weight of
1. In this way, we could convert the graph GT (t) into a
node-weighted graph first. Then, we construct an edge-
weighted graph G′

T (t) from GT (t) by initializing G′
T (t) with

the same node-set and edge-set but a different edge weight
function w′. For every edge (u, v) in G′

T (t), let the edge
weight w′(u, v) = 1

2
(w(u) + w(v)). Afterwards, we compute

a Steiner tree T (t) of G′
T (t) on S using the ρ-approximation

algorithm for Minimum Steiner Tree [14]. Obviously, this
Steiner tree T (t) could be viewed as the STP-MSP of GT (t)
on S, and it is our final result. The pseudo-code of this
algorithm is presented in algorithm 3.

Given a snapshot GT (t), the following lemma gives the re-
lationship between the number of RSUs in optimal solution
and that chosen in our algorithm 3. For the ease of readers,
we use G as a short form of GT (t), and G′ as a short form
of G′

T (t).

Lemma 1. Denote Topt G as the optimal Steiner tree in

Algorithm 3 Snapshot Scheduling (GT (t) = (V, E, S))

for every vertex v in V do
if v ∈ S then

w(v) = 0;
end if
if v ∈ V \ S then

w(v) = 1;
end if

end for
Initialize an edge-weighted graph G′

T (t) = (V ′, E′, w′, S′) by
setting V ′ = V ,S′ = S and E′ = E
for each edge (vi, vj) in graph G′

T (t) do

w
′
(vi, vj) = (w(vi) + w(vj))/2.

end for
T = SMT(G′

T (t), S)
Output the vertices in T as the set of active RSUs at time t.

node-weighted graph G and Topt G′ as the optimal Steiner
tree in edge-weighted graph G′ we constructed. Define a
function C : G → N , calculating the number of Steiner

points contained in a tree. We have that C(T) ≤ maxv∈TOP T G
d(v)

2
ρC(Topt G),

where maxv∈TOP T Gd(v) is the maximum degree of vertices
in the optimal solution Topt G.

Proof. Following the notation in algorithm 3, denote T
as the output of the algorithm 3. As we could consider tree
Topt G as a Steiner tree for terminal set S in graph G′, we
first have,

w′(T) ≤ ρ · w′(TOPT G′) ≤ ρ · w′(TOPT G) (1)

= ρ ·
∑

(u,v)∈E(TOP T G)

1

2
(w(u) + w(v)) (2)

= ρ ·
∑

u∈V (TOP T G)

dTOP T G(u)

2
w(u) (3)

≤ ρ · maxv∈TOP T Gd(v)

2

∑

u∈V (TOP T G)

w(u) (4)

= ρ · maxv∈TOP T Gd(v)

2
w(TOPT G) (5)

≤ ρ · maxv∈TOP T Gd(v)

2
w(TOPT G). (6)

As the weight we assign to each vertex in V \ S is exactly
1 and all the Steiner nodes have a degree of no less than 2,
we have

C(T) = w(T) ≤ w′(T) (7)

≤ ρ · maxv∈TOP T Gd(v)

2
w(TOPT G) (8)

= ρ · maxv∈TOP T Gd(v)

2
C(TOPT G). (9)

Studying about the snapshots of the temporal graph de-
rived from VANET further, we observe the following prop-
erties for the maximum degree of vertices in the optimal
Steiner tree.

1. For a given terminal set S, the maximum degree of all
the vertices in the Steiner tree for the STP-MSP varies
among different snapshots.

2. For different terminal sets, the maximum degree of all
the vertices in the Steiner tree for the STP-MSP are
different as well.

However it is obvious that the maximum degree of vertices
representing vehicles in the network will not exceed 2 in the
system. As for the maximum degree of vertices representing
the RSUs, the maximum number will depend on two factors.
First, it depends on the time. With the change of the time,
the number of disconnected components of vehicles in the
network changes; Second, it depends on the density of the
VANET. When the number of vehicles in the VANET is
very large, the number of disconnected components will be
lowered and the maximum degree of vertices in the Steiner
tree will become smaller as well. No matter how different the
value of the maximum degree could vary, there is no doubt
that it will be smaller than n + 1 when the total number of
vehicles in the network is n, Therefore, our algorithm could
achieve an approximation ratio of ρ ∗ n+1

2
.

6. PERFORMANCE EVALUATION
In order to evaluate the performance of our scheduling

scheme in practice, we conduct experiments on the Dallas
downtown area in the state of Texas. Figure 3 provides an
overview of the area we experiment on. It covers approxi-
mately 2×2km2 and contains around 20 major roads. Those
roads highlighted in dark in figure 3 are the roads we will
focus on in the area.

Figure 3: Dallas Downtown Area

6.1 System Framework and Environment Setup
Our system mainly contains the following modules, the

Map Loader, the RSU Generator, the Vehicle Generator and
the RSU Scheduler. They are operated in a sequence as il-
lustrated in Figure 4. The road map is loaded first. Each
road in the map is stored in our system as a set of line
segments. Next, the RSU Generator generates the coordi-
nates of all the RSUs according to the map. These RSUs
are deployed according to our description in section 4 and
cover each road in the system. The Vehicle Generator takes
control afterwards. A set of vehicles with chosen speeds
and calculated routes are introduced into the system in this
module.

After all these steps, the system walks into the RSU Sched-
uler module, the essential module of the whole system. Im-
plementing the snapshot selection algorithm as well as the
RSU snapshot scheduling algorithm proposed in section 5, it
outputs the set of RSUs that needs to be activated to guar-
antee the connectivity of the network. In detail, at each time
spot, the coordinates for each existing vehicle in the sys-
tem is updated according to its speed and calculated route.

 R SU S cheduling M odule In itia lization M odule

R oad
M ap

M ap
Loader

Vehic le
G enerator

Form atted
M ap

R SU Set
Vehic le

Set

generategenerate

load

generate

Vehic le
C ontro lle r

R S U
S cheduler

R SU
G enerator

schedule

S tart

E nd

N ext tem poral
ite ra tion va lid?

N o

A

A

Yes

updateinput

Figure 4: System Flow Diagram

For those vehicles that have reached destinations, they will
choose a new destination and start from its current position.
These steps are included in the Vehicle Controller submod-
ule in our system. Afterwards, the RSU Scheduler generates
the set of RSUs that needs to be activated and provides the
appropriate scheduling adjustment.

Based on the size of the area we consider, as well as
the real traffic data of downtown area released by the de-
partment of public transportation of the city of dallas at
Texas [?], we set the maximum number of vehicles allowed
to appear at the same time in our system to be 2000. Thus
the maximum average density of vehicles would be around
500/km2. The maximum speed of vehicles is set to be
60mile/hour. As we mentioned earlier, the time in our sys-
tem is implemented discretely. Every time unit is set equal
to 10ms in our system.

In the following, we study the performance of our scheme
by investigating the impact of several important vehicles’
parameters on the percentage of RSUs chosen in our exper-
iment. The parameters we will consider in our experiment
are the total number of vehicles as well as the communica-
tion range of vehicles and RSUs.

Figure 5: Number of Vehicles w.r.t. the Percentage of Active
RSUs

6.2 Experiments and Evaluation
In our first set of experiments, we vary the number of Ve-

hicles in the target region, and study how the change of the
number of vehicles will affect the number of RSUs selected.
We set the vehicle transmission range to be 50 meters and
RSU transmission range to be 250 meters. We vary the
number of vehicles from 0 to 2,000 and get figure 5. The
percentage of RSU selected for each case (e.g. when number
of vehicles is 500) is an average value calculated based on
1000 rounds of the same case.

As shown in Figure 5, the total number of RSUs used to
connect the vehicles is increasing rapidly before the number
of vehicles reaches around 400. After that, it slowly in-
creases and the value is tend to be stabilized as the number
of vehicles passing 1,000 and approaching 2,000. Even when
the number of vehicles reaches 2,000, the number of active
RSUs to connect all the vehicles is on average only around
12. This result indicates that our algorithm effectively se-
lects the minimal RSU set for connecting all the vehicles
in the target region and reduces the energy consumption of
RSUs in a great extent.

Figure 6: Change of Vehicle Transmission Range & RSU
Transmission Range w.r.t. the Number of Active RSUs

In our second set of experiments, we vary the vehicle trans-
mission range as well as the RSU transmission range to study
their impacts on the number of active RSUs selected for the
target area. In our experiment, the total number of vehi-
cles is set to be 1000. The vehicle transmission range varies
from 25 meters to 200 meters, and the RSU transmission
range varies from 220 meters to 330 meters. The number
of active RSUs we show in the figure 6 is the average value
calculated based on 1000 rounds of the same case. Figure 6
provides a three dimensional view of the relationship be-
tween vehicle transmission range, RSU transmission range
and the number of active RSUs. In this experiment, the
size of the RSU set deployed in the target region decreases
from 100 to 80 with the increasing of the RSUs’ transmis-
sion range. The maximum and the minimum number of
active RSUs in this figure is around 48 and 22. If fixing the
RSU transmission range(e.g. 300), we can observe that the
number of active RSUs does not change much. This shows
that our RSU scheduling scheme could provide great perfor-
mance disregarding the change of the vehicle transmission
range in the given range. If fixing the vehicle transmission
range instead(e.g. 50), the number of active RSUs decreases
quickly with the increasing of the RSU transmission range.
This result shows that the change of the RSU transmission
range has more impact on the number of active RSUs se-

lected than the change of the vehicle transmission range.
This phenomenon is caused by the larger transmission ca-
pability of RSUs compared with the vehicles in the system.

Summary of our results. It is demonstrated in our
experimental studies that our RSU scheduling scheme could
effectively reduce the energy consumption of RSUs in a great
extent by selecting the minimal number of RSUs in various
cases, such as the increasing of total number of vehicles as
well as the vehicle transmission ranges. We also show in
our experiment that the change of the RSU transmission
range has a great impact on the total number of active RSUs
selected in our scheduling scheme at each time.

7. CONCLUSION AND FUTURE WORK
For the purpose of preventing the network partition, we

study the problem of the RSU scheduling in a discrete time
system. Considering the importance of the network connec-
tivity, our target is to provide a RSU scheduling scheme,
which will not only guarantee full coverage in the VANET,
but also achieve the minimum energy consumption.

We formalize this problem as an combinatorial optimiza-
tion problem and divided them into two subproblems namely
Snapshot Selection and Snapshot Scheduling. By providing
solutions for these two subproblems, we successfully present
a complete scheduling scheme for RSUs in the VANET in
this paper. Theoretical analysis shows that our scheduling
scheme achieves ρ∗ n+1

2
-approximation ratio when the total

number of vehicles in the network is n. We further evalu-
ate the performance of our scheme in the dallas downtown
area in the state of Texas. Experiment results show that
our algorithm can efficiently select the minimal percentage
of RSUs to connect up to thousands of vehicles in the tar-
get region and successfully reduce the energy consumption
of RSUs in the meantime as well.

We are interested in quite a few directions as our future
work. First of all, as our current system is centralized, dis-
tributed version of it would be a very interesting also chal-
lenging research direction. Second, we are looking forward
to further study about one drawback of our system in the
future. In our system, we require each vehicle updates their
information including speed and calculated route to the clos-
est active RSU. For the situation when there are no active
RSUs near the vehicle, the system’s response time and per-
formance would be affected. Therefore, we are looking for-
ward to design detailed protocols to solve this problems.
Last but not least, we are interested in studying about the
impact of different vehicle mobility models on the scheme in
the future.

8. REFERENCES
[1] Berman, P., and Ramaiyer, V. Improved approximations

for the steiner tree problem. In selected papers from the
third annual ACM-SIAM symposium on Discrete
algorithms (Orlando, FL, USA, 1994), Academic Press,
Inc., pp. 381–408.

[2] Bettstetter, C. Smooth is better than sharp: a random
mobility model for simulation of wireless networks. In
Proceedings of the 4th ACM international workshop on
Modeling, analysis and simulation of wireless and mobile
systems (New York, NY, USA, 2001), MSWIM ’01, ACM,
pp. 19–27.

[3] Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C.,

and Jetcheva, J. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In Proceedings of
the 4th annual ACM/IEEE international conference on

Mobile computing and networking (New York, NY, USA,
1998), MobiCom ’98, ACM, pp. 85–97.

[4] Camp, T., Boleng, J., and Davies, V. A survey of
mobility models for ad hoc network research. WIRELESS
COMMUNICATIONS and MOBILE COMPUTING
(WCMC): SPECIAL ISSUE ON MOBILE AD HOC
NETWORKING: RESEARCH, TRENDS AND
APPLICATIONS 2 (2002), 483–502.

[5] Chen, D., Du, D.-Z., Hu, X.-D., Lin, G.-H., Wang, L.,

and Xue, G. Approximations for steiner trees with
minimum number of steiner points. J. of Global
Optimization 18 (September 2000), 17–33.

[6] Das, S. R., and Perkins, C. E. Performance comparison
of two on-demand routing protocols for ad hoc networks.
pp. 3–12.

[7] Du, D.-Z., Wang, L., and Xu, B. The euclidean
bottleneck steiner tree and steiner tree with minimum
number of steiner points. In Proceedings of the 7th Annual
International Conference on Computing and
Combinatorics (London, UK, 2001), COCOON ’01,
Springer-Verlag, pp. 509–518.

[8] Garey, M. R., and Johnson, D. S. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990.

[9] Hougardy, S., and Prömel, H. J. A 1.598 approximation
algorithm for the steiner problem in graphs. In Proceedings
of the tenth annual ACM-SIAM symposium on Discrete
algorithms (Philadelphia, PA, USA, 1999), SODA ’99,
Society for Industrial and Applied Mathematics,
pp. 448–453.

[10] Johnson, D. B., and Maltz, D. A. Dynamic source
routing in ad hoc wireless networks. In Mobile Computing
(1996), Kluwer Academic Publishers, pp. 153–181.

[11] Lin, G.-H., and Xue, G. Steiner tree problem with
minimum number of steiner points and bounded
edge-length. Inf. Process. Lett. 69 (January 1999), 53–57.

[12] Lochert, C., Scheuermann, B., Wewetzer, C., Luebke,

A., and Mauve, M. Data aggregation and roadside unit
placement for a vanet traffic information system. In
Proceedings of the fifth ACM international workshop on
VehiculAr Inter-NETworking (New York, NY, USA, 2008),
VANET ’08, ACM, pp. 58–65.

[13] Naumov, V., Baumann, R., and Gross, T. An evaluation
of inter-vehicle ad hoc networks based on realistic vehicular
traces. In Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and computing
(New York, NY, USA, 2006), MobiHoc ’06, ACM,
pp. 108–119.

[14] Robins, G., and Zelikovsky, A. Improved steiner tree
approximation in graphs. In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA, 2000), SODA ’00, Society for
Industrial and Applied Mathematics, pp. 770–779.

[15] Royer, E. M., and Perkins, C. E. Multicast operation of
the ad-hoc on-demand distance vector routing protocol. In
Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking (New
York, NY, USA, 1999), MobiCom ’99, ACM, pp. 207–218.

[16] Saha, A. K., and Johnson, D. B. Modeling mobility for
vehicular ad-hoc networks. In Proceedings of the 1st ACM
international workshop on Vehicular ad hoc networks (New
York, NY, USA, 2004), VANET ’04, ACM, pp. 91–92.

[17] Zhang, Y., Zhao, J., and Cao, G. Service scheduling of
vehicle-roadside data access. Mob. Netw. Appl. 15
(February 2010), 83–96.

