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Abstract In this paper, we study the computational complexity and approximation com-
plexity of the connected set-cover problem. We derive necessary and sufficient conditions
for the connected set-cover problem to have a polynomial-time algorithm. We also pres-
ent a sufficient condition for the existence of a (1 + ln δ)-approximation. In addition, one
such (1 + ln δ)-approximation algorithm for this problem is proposed. Furthermore, it is
proved that there is no polynomial-time O(log2−ε n)-approximation for any ε > 0 for the con-
nected set-cover problem on general graphs, unless N P has an quasi-polynomial Las-Vegas
algorithm.

Keywords Connected set-cover · Computational complexity · Approximation algorithms

1 Introduction

In this paper, we study the computational complexity and approximation complexity of the
connected set-cover (CSC) problem. Firstly, we introduce some related definitions.
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Definition 1 Set-cover: Given a set system (V, S), where V is a set of elements and S is a
family of n subsets of V such that ∪S∈S S = V , a set-cover C of V is a subfamily of S such
that each element in V is in at least one of the subsets in C .

Let G be a connected graph with S as the vertex set. Here each node in graph G is labeled
with a subset in S, so we use the terminology ‘set’ and ‘vertex’ (in G) interchangeably in the
rest of the paper. A connected set-cover with respect to (V, S, G) can be defined as follows.

Definition 2 Connected set-cover: We call C ⊆ S a connected set-cover if C is a set-cover
of V and C induces a connected subgraph of G.

The CSC problem is to find the minimum connected set-cover for given (V, S, G). In [1],
Shuai and Hu studied the computational complexity of the problem in several simple graphs
such as line graph, ring graph and spider graph. In [2], Gupta et al. studied the CSC problem
under the distributed applications, for which they proposed two approximation algorithms.
In this paper, we further study the computational complexity and approximation complexity
of the CSC problem. Our results are organized as follows. In Sect. 2, we give necessary and
sufficient conditions for the CSC problem to have a polynomial-time algorithm. In Sect. 3,
we propose a condition for the CSC problem to have a (1 + ln δ)-approximation algorithm.
One such (1 + ln δ)-approximation algorithm is proposed. In Sect. 4, we show that for the
CSC problem in general graphs, there is no polynomial-time O(log2−ε n)-approximation for
any ε > 0 unless N P has a quasi-polynomial Las-Vegas algorithm.

2 Polynomial-time computable condition

The CSC problem (V, S, G) is solvable in polynomial time in some simple cases. For exam-
ple in [1], Shuai and Hu have shown that there are polynomial-time algorithms for the CSC
problem on line graphs and ring graphs, while on star graphs and spider graphs, the problem
is N P-hard. In this section, we further study the computational complexity of the CSC prob-
lem. We derive necessary and sufficient conditions for the problem to have a polynomial-time
algorithm.

Lemma 1 Given a graph G and a positive integer k, if every spanning tree of graph G has
at most k leaves, then the maximum degree of nodes in G is at most k.

Proof Assume by contradiction that there is a node v ∈ G with degree m, where m > k.
Consider any spanning tree T of G with v as the root node. If all the neighbors of v in

graph G are also directly connected to v in T , then T has m different subtrees rooted at v.
So T has at least m leaves, which conflicts with the assumption that every spanning tree of
graph G has at most k leaves. Or else some neighbor node of v in G is no longer the neighbor
of v in T . Suppose a node u is connected to v in graph G via edge (u, v), and this edge does
not appear in T as shown in Fig. 1. Then u must be connected to some other node, denoted
by w. Now we add edge (u, v) into T and delete (u, w) from T . Then we get a new tree
which is also a spanning tree of graph G. After performing this transformation for all such
neighbor nodes of v, we get a new spanning tree T ′ in which node v has degree m. Then T ′
has at least m leaves, which leads to a contradiction. ��

We call any node that has degree more than two a 3+ node. We construct a new graph
G3 = (V 3, E3) as follows. Form V 3 by all the 3+ nodes and leaf nodes of G. For each pair
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Fig. 1 Spanning tree
transformation
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of nodes in V 3, if there is an edge between them in G, then there is still an edge between
them in G3; else if there is a path formed by nodes of degree two connecting them, we add an
edge to connect them in G3. The following lemma shows that for a graph G, if the number
of the leaves of its spanning trees can be bounded, then the number of 3+ nodes in it can also
be bounded.

Lemma 2 Given a graph G and a positive integer k, if every spanning tree of graph G has
at most k leaves, then there are at most 5k − 5 3+ nodes in graph G.

Proof Suppose among all the spanning trees of G that have k leaves, T is the one that has the
minimum total depth. Then via T , we can reveal some basic structural properties of graph G
as follows.

1. There are at most k −2 3+ nodes in tree T . Or else there will be more than k leaves in T ,
which conflicts with the assumption. All these 3+ nodes are also 3+ nodes in graph G.

2. The child nodes of each 3+ node in T can be 3+ nodes in graph G. In graph G, these
nodes can have edges with each other or some nodes that are 3+ nodes in T . The number
of such nodes equals to the number of paths formed by nodes of degree two in tree T ,
which is at most 2k − 3.

3. The k leaf nodes of tree T can be 3+ nodes in graph G. For a leaf node i , suppose i is
in level l(i) of T . Due to the assumption that T has the minimum total depth, i can only
be connected with nodes of level no smaller than l(i) − 1. Also notice that i can only be
connected to at most one node that has a parent of degree two. Or else we link such two
nodes to the leaf. This will change the leaf node into an interior node but will also lead to
two new leaves. Then the total number of leaves in the new spanning tree will be k + 1.

4. A non-leaf node v that has a parent of degree two can not be connected to other interior
nodes in graph G. If so, we can change the tree such that the parent of this non-leaf node
becomes a new leaf. This will increase the number of the leaves in T . However, v can
be connected with some leaf nodes. Because each leaf node can only be connected with
one such node as v, there are at most k such nodes as v that can be linked to leaf nodes.
These nodes can be 3+ nodes in graph G.

5. The rest nodes of T have degrees one or two in graph G.

Based on the above analysis, there are at most 5k − 5 3+ nodes in graph G. ��
For graph G which satisfies the property that all of its spanning trees have no more than

k leaves, we propose an algorithm for the CSC problem as follows.
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Algorithm 1 Polynomial-time algorithm for the CSC problem
Input: A instance of the CSC problem (V, S, G).
Output: The minimum connected set-cover.

1: for each maximal path (i, j) formed by nodes of degree two in G do
2: Compute the minimum connected set-cover on (i, j) through exhaustive search;
3: end for
4: for each possible set M of 3+ nodes do
5: Compute the minimum connected set-cover formed by nodes in M and additional nodes of degree two

by exhaustive search;
6: end for
7: Return the minimum of the above outcomes;

Recall that each edge in G3 corresponds to either a simple edge or a path formed by nodes
of degree two and two 3+ nodes in G. In the rest of this paper, we treat each edge of G3 as a
path. Intuitively, there are two cases for the minimum connected set-cover.

The first case is that the minimum connected set-cover is formed only by nodes of degree
two, then it lies on only one edge of G3. For this case, the algorithm checks all the edges
of G3. Notice that any connected set-cover on an edge must form a line segment. So every
possible line segment on each edge is examined. Finally, the algorithm selects the minimum
one.

The other case, in which the minimum connected set-cover lies on at least two edges of G3,
is basically the same. In this case, the minimum connected set-cover contains one or more 3+
nodes. Without loss of generality, we assume that the 3+ nodes in the minimum connected
set-cover form set M . Clearly for those edges of G3 that have no endpoints in M , the nodes
on them can not appear in the minimum connected set-cover. Otherwise, the connectivity
can not be maintained. If there is a node v of degree two which is in the minimum connected
set-cover, then v must be connected to some 3+ node p ∈ M through a path formed by nodes
of degree two lying between v and p. For one such edge i , there are two cases as shown in
Fig. 2. If only one end point p is in M , then we consider all the possible paths with v and p
be the endpoints. Else if both endpoints p and q of edge i are in M , the solution on edge i
will be formed by two pieces, each of which is connected with one of the endpoints p and
q . During the second round of Algorithm 1, all such possibilities are checked.

Lemma 3 For a connected set-cover problem (V, S, G), if every spanning tree of graph G
has at most k leaves, then Algorithm 1 finds the minimum connected set-cover in polynomial
time.

Proof Clearly in both cases, our exhaustive search-based algorithm finds the optimal solu-
tion. So here we only need to analysis the time complexity of the algorithm in these two
cases.

Case 1 The minimum connected set-cover of (V, S, G) consists of only nodes of degree
two.

Fig. 2 Two cases when at least one 3+ node is in the minimum connected set-cover
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Suppose there are totally ni nodes on edge i of G3, then these ni nodes form a line segment.
If a connected set-cover exists on such a line segment, it must also form a line segment to
maintain connectivity. Based on the selections of the endpoints, there are

(ni
2

) + ni different
such segments on edge i (Here ni is for the case that the minimum connected set-cover is
a single node). Hence during the exhaustive search, we only need to check these

(ni
2

) + ni

possibilities. This procedure takes time of O(n2
i ). By Lemma 1, each node of G has degree

at most k. Then there are at most k(5k −5) edges in G3. Hence this case takes O(k2n2) time.

Case 2 The minimum connected set-cover of (V, S, G) lies on two or more edges of G3.

Notice that there are 25k−5 − 1 possible nonempty sets of 3+ nodes. Each of them is
checked by our algorithm. Consider such a set M , the degree of each 3+ node in M is at
most k by Lemma 1. Hence there are at most k|M | edges which have endpoints in M . Let
edge i formed by ni nodes be one of such edges. In case a as shown in Fig. 2, there are
ni − 1 choices of v, so is the number of choices of the path with p and v as endpoints. While
in case b, there are

(ni
2

) − k different selections of {v, u}. Hence for M , we need to check
O(k|M |n2

i ) possibilities. Thereby, the time needed to perform the exhaustive search for case
2 is O(25kkn2).

Based on the above analysis for the two cases, we can claim that Algorithm 1 finds the
minimum connected set-cover in polynomial time. ��
Theorem 1 Given a graph G and a positive integer k, if every spanning tree of graph G
has at most k leaves, then there is a polynomial-time algorithm solving the CSC problem on
graph G.

Theorem 2 If N P �= P, then the CSC problem is N P-hard if and only if G has a spanning
tree with the number of the leaves growing to infinity as the size of G grows to infinity.

Proof a. The only if part can be explained by the polynomial-time algorithm.
b. Given an instance of the set-cover problem (V, S), we can construct a connected set-cover

problem (V ′, S ′, G) in which G satisfies the spanning tree constraint as follows. Create
a new element v0 and a related set s0 = {v0}. Then V ′ = V ∪ {v0} and S ′ = S ∪ {{v0}}.
Let G be a star graph with the center {v0} connecting to all the sets in S. Clearly, there
is only one spanning tree for graph G, which is itself. The number of leaves of G grows
to infinity as the size of G goes to infinity. It is easy to verify that (V, S) has a set-cover
C if and only if (V ′, S ′, G) has a connected set-cover C ∪ {{v0}}. ��

Corollary 1 Given a graph G and two positive integers k and k′, if G has no more than
k 3+ nodes and the maximum degree of nodes in G is no larger than k′, then there is a
polynomial-time algorithm solving the CSC problem on graph G.

3 (1 + ln δ)-approximatable condition

Theorem 3 If G has a spanning tree with the number of leaves growing to infinity as the size
of G grows to infinity, then there is no polynomial-time (ρ ln δ)-approximation for 0 < ρ < 1
for the CSC problem (V, S, G) unless N P ⊂ DT I M E(nO(log log n)), here δ is the maximum
size of the sets in S.

Proof Feige [3] has proved that for any 0 < ρ < 1, there is no approximation algorithm
with performance ratio ρ ln δ for the set-cover problem, unless N P ⊂ DT I M E(nlog n log n).
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Fig. 3 Construction of the
connected set-cover problem
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By contradiction, we assume that there is a polynomial-time (ρ′ ln δ)-approximation for
the CSC problem with 0 < ρ′ < 1.

Given an instance (V, S) of the set-cover problem, we construct a graph G for the CSC
problem as shown in Fig. 3. Create a new element v0 and a set {v0}. Connect {v0} with each
set Si ∈ S via a path Pi = pi1 pi2, . . . , pik . Each pi j is a singleton which contains an element
v∗. Then we get an instance of the CSC problem (V ′, S ′, G). Here V ′ = V ∪ {v0, v

∗}, S ′ =
S ∪ {{v0}} ∪ {pi j |1 ≤ i ≤ n, 1 ≤ j ≤ k} where k is an integer which satisfies that
k > (ρ′)/(1 − ρ′). Clearly, G is a spider graph with the number of leaves being (n − 1)/k
which grows to infinity as the size of G goes to infinity.

Suppose the optimal solutions of the set-cover problem and the CSC problem have sizes
opt and opt∗ respectively. Then according to our earlier assumption, we have a polynomial-
time algorithm that produces a solution A∗ of size no larger than ρ′ ln δ · opt∗ for the CSC
problem. Then we can easily get a solution A for the set-cover problem that satisfies

|A| = (|A∗| − 1)/k.

Hence we have

|A| = (|A∗| − 1)/k

≤ (ρ′ ln δ · opt∗ − 1)/k

= (ρ′ ln δ(opt · k + 1) − 1)/(k)

≤ ρ′
(

1 + 1

k

)
ln δ · opt

< ln δ · opt,

which means that we have a polynomial-time ρ-approximation algorithm for the set-cover
problem with 0 < ρ < 1. ��

We propose an algorithm for the CSC problem as shown by Algorithm 2. Here S̄ is con-
structed as follows. After a spanning tree T is selected, the nodes of M are all connected. Here
the nodes of T are all 3+ nodes and the edges of T are either simple edges or paths formed
by nodes of degree two. If T has already covered all the elements in V , then T is already a
connected set-cover. Or else if some element of V is not covered yet, then we need to form a
connected set-cover via additional nodes of degree two. Notice that if some node v of degree
two is selected, then the path formed by nodes of degree two between v and some 3+ node
must also be selected. For each node p ∈ M , let P = p1 p2, . . . , pi be the path connected
with p by p1 (P has no intersection with T ), here each node of P has degree two. Suppose
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Algorithm 2 Approximation algorithm for the CSC problem
Input: An instance of the CSC problem (V, S, G).
Output: A connected set-cover within (1 + lnδ) of the optimal solution.

1: for each maximal path (i, j) formed by nodes of degree two in G do
2: Perform an exhaustive search on (i, j);
3: end for
4: for each possible set of 3+ nodes M do
5: for each possible spanning tree T of nodes in M do
6: Let the the set of elements covered by T be VT
7: Find a set-cover S0 from S̄ for V0 = V − VT via the greedy algorithm in [4];
8: Form a CSC by combining T and S0;
9: end for
10: end for
11: Return the minimum among all the outcomes;

P is on edge a with na nodes. Form na − 1 sets with the form of S j = (p1, p2, . . . , p j ) as
shown in Fig. 4, where 1 ≤ j ≤ na − 1. Then S̄ is the set that contains all such sets as S j for
each p ∈ M .

Theorem 4 If G is a tree with at most k nodes of degree more than two, then the CSC problem
has a polynomial-time (1 + ln δ)-approximation algorithm.

Proof We prove this theorem by proving that if G is a tree with at most k 3+ nodes, then
Algorithm 2 is a polynomial-time (1 + ln δ)-approximation algorithm for the CSC problem
(V, S, G).

Let OPT with |O PT | = opt be the minimum connected set-cover. Then similar with the
analysis in the last section, there are two cases for OPT .

Case 1 If OPT lies only on one edge of G3, then by exhaustive search on each edge of G3,
Algorithm 2 finds OPT .

Case 2 If OPT lies on two or more edges of G3, then at least one 3+ node is in the OPT .
Let M = V 3 ∩ O PT be the set of 3+ nodes in OPT . Then there is only one spanning tree
for nodes of M in G3, which is the minimum connected subgraph T of G that contains all
the nodes of M . T must be in OPT , or else OPT can not be connected. Suppose the set of
elements get covered by T is VT and V0 = V − VT . Clearly, V0 is the set of elements that
are not covered by T . Then a set-cover S0 for V0 is generated by the greedy algorithm. Let
the optimal set-cover for elements in V0 be S∗. As O PT − T is also a set-cover for V0, so

|O PT − T | ≥ |S∗|.
On the other side,

|S0| ≤ (1 + ln δ)|S∗|.
Hence we have

|S0| ≤ (1 + ln δ)|O PT − T |.

Fig. 4 Construction of S̄
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Let A be the final solution generated by our algorithm and B be the solution generated during
the algorithm that contains T . Then B = T ∪ S0 and we have

|A| ≤ |B| = |T | + |S0|
≤ |T | + (1 + ln δ)|O PT − T |
≤ (1 + ln δ)|O PT |.

This means that Algorithm 2 generates a solution of size less than (1 + ln δ) of the optimal
solution. In the following we show that the algorithm runs in polynomial time.

In Case 1, the exhaustive search on an edge i with ni nodes takes time O(n2
i ). Because

G is a tree, the number of edges in G3 is at most n − 1. So it takes O(n3) time for Case 1.
In Case 2, there are totally 2k − 1 possible non-empty set of 3+ nodes. For each of these 3+
node sets, a greedy procedure with time complexity O(n2) is performed. so the total time
cost for Case 2 is O(2kn2). The total time complexity of Algorithm 2 is O(2kn3).

Based on the above analysis, Algorithm 2 is a polynomial-time (1 + ln δ)-approximation
algorithm. ��
Theorem 5 For graph G and a given positive integer k, if there are at most k 3+ nodes in
graph G, then there is a polynomial-time (1 + ln δ)-approximation algorithm for the CSC
problem on graph G.

Proof We prove that if G is a graph with at most k 3+ nodes, then Algorithm 2 is a poly-
nomial-time (1 + ln δ)-approximation algorithm for the CSC problem (V, S, G). The proof
is basically the same as that of Theorem 4. The difference is that for each nonempty set M
of 3+ nodes, there might be several spanning trees connecting the nodes of M . So here the
algorithm considers all such possible spanning trees. For each of these trees, a connected
set-cover is generated.

The number of simple edges between nodes of G3 is at most k(k − 1)/2 and the number
of paths which are formed by nodes of degree two and connecting nodes of G3 is at most
n − k. So there are at most n + (k2 − 3k)/2 different edges between nodes of M in G3.
It takes |M | − 1 edges to form a spanning tree for nodes in M . So there are no more than
( n+k2

|M|−1

)
possible spanning trees for M . This will add a factor of O((n + k2)(k−1)) to the time

complexity comparing with that in Theorem 4. So the time complexity of Algorithm 2 for
graph G is O(2k(n + k2)k+2). ��

4 O(log2−ε n)-inapproximability for ε > 0

In this section, we show that for general graphs, there is no polynomial-time O(log2−ε n)-
approximation for the CSC problem for any ε > 0. Firstly, we introduce the Group Steiner
Tree problem, which is related closely with the CSC problem.

Definition 3 Group Steiner Tree problem: Given an edge-weighted graph G = (V, E), a
root vertex r ∈ V and k nonempty subsets of vertices, g1, g2, . . . , gk , find the minimum total
weight tree containing r and at least one vertex from each subset gi .

The following fact has been proved in [5].

Lemma 4 There is no polynomial-time O(log2−ε n)-approximation for the Group Steiner
Tree problem for any ε > 0 unless N P has quasi-polynomial Las-Vegas algorithms.
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Now, for the CSC problem, we have a similar result.

Theorem 6 There is no polynomial-time O(log2−ε n)-approximation for the CSC problem
for any ε > 0 unless N P has quasi-polynomial Las-Vegas algorithms.

Proof We construct a reduction from the Group Steiner Tree problem to the CSC problem
as follows.

Consider an input of the Group Steiner Tree problem, a graph G = (V, E) with edge
weight w : E → Z+, a root vertex r ∈ V and k nonempty subsets of vertices, g1, g2, . . . , gk .
Define X = {g0, g1, . . . , gk} where g0 = {r}. For each node u ∈ V , define Su = {gi | u ∈
gi }. For each edge (u, v) ∈ E , construct a path connecting Su and Sv with k ·w(u, v) interme-
diate nodes. Let the obtained graph on V = {Sv | v ∈ V } and these intermediate nodes be H .
Suppose there is a polynomial-time O(log2−ε n)-approximation for the CSC problem. Let
D be such an approximation solution on instance (X, V, H) and let optC SC be the number
of nodes in an optimal solution, i.e., the objective function value of the CSC problem. Then
we have

|D| ≤ O(log2−ε n)optC SC .

Clearly, D is the node set of a tree T in H , which induces a tree T ′ in G. Denote by w(T ′)
the total edge weight of T ′. Then

w(T ′) ≤ |D|
k

.

Now, let T ∗ be a minimum Group Steiner Tree, which induces a tree T ∗∗ in H . Then the
number of nodes in T ∗∗ is at most w(T ∗)(k + 2) and is at least optC SC . Therefore,

w(T ′) ≤ O(log2−ε n) · k + 2

k
· w(T ∗) = O(log2−ε n) · w(T ∗),

that is, T ′ is a polynomial-time O(log2−ε n)-approximation for the Group Steiner Tree prob-
lem. By Lemma 4, N P has quasi-polynomial Las-Vegas algorithms.

In the above, we treat (X, V, H) as an instance of the CSC problem. The reader may
suspect this treatment because

(a) it is unclear how to represent each intermediate node as a subset of X , and
(b) it is possible that Su = Sv , but in the definition of the CSC problem, V is not a multiple

subset collection.

We remark that (a) and (b) can be fixed easily. In fact, for each intermediate node x , we can
introduce a new element ex and let Sx = {ex } represent node x . For each Sv, v ∈ V , we
can also introduce a new element ev and add ev into Sv . Finally, put all new elements into
Sr and X . Note that g0 is contained only in Sr . Therefore, any feasible solution of the CSC
problem must contain Sr . This means that those subsets representing intermediate nodes are
useless for covering elements and they are useful only in the establishment of connectivity.
Moreover, we can easily see that this modification does not effect the size of any solution of
the CSC problem. ��
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