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Abstract. We provide a general method to generate randomized roundings that
satisfy cardinality constraints. Our approach is different from the one taken by
Srinivasan (FOCS 2001) and Gandhi et al. (FOCS 2002) for one global constraint
and the bipartite edge weight rounding problem.
Also for these special cases, our approach is the first that can be derandomized.
For the bipartite edge weight rounding problem, in addition, we gain an Õ(|V |)
factor run-time improvement for generating the randomized solution.
We also improve the current best result on the general problem of derandomizing
randomized roundings. Here we obtain a simple O(mn log n) time algorithm
that works in the RAM model for arbitrary matrices with entries in Q≥0. This
improves over the O(mn2 log(mn)) time solution of Srivastav and Stangier.

1 Introduction and Results

Many combinatorial optimization problems can easily be formulated as integer linear
programs (ILPs). Unfortunately, solving ILPs is NP–hard, whereas solving linear pro-
grams (without integrality constraints) is easy, both in theory and practice. Therefore, a
natural and widely used technique is to solve the linear relaxation of the ILP and then
transform its solution into an integer one.

Typically, this requires rounding a vector x to an integer one y in such a way that
the rounding errors |(Ax)i − (Ay)i|, i ∈ [m] := {1, . . . , m}, are small for some given
m × n matrix A.

1.1 Randomized Rounding

A very successful approach to such rounding problems is the one of randomized round-
ing introduced by Raghavan and Thompson [RT87,Rag88]. Here the integer vector
y is obtained from x by rounding each component j independently with probabil-
ities derived from the fractional part of xj . In particular, if x ∈ [0, 1]n, we have
Pr(yj = 1) = xj and Pr(yj = 0) = 1 − xj independently for all j ∈ [n].

Since the components are rounded independently, the rounding error |(Ax) i −
(Ay)i| in constraint i is a sum of independent random variables. Thus it is highly con-
centrated around its mean, which by choice of the probabilities is zero. Large devi-
ation bounds like the Chernoff inequality allow to quantify such violations and thus
yield performance guarantees. The derandomization problem is to transform this ran-
domized approach into deterministic rounding algorithms that keep the rounding errors
|(Ax)i − (Ay)i| below some threshold.



1.2 Hard Constraints

Whereas the independence in rounding the variables ensures that the rounding errors
|(Ax)i − (Ay)i| are small, it is very weak in guaranteeing that a constraint is satisfied
without error. We call a constraint hard constraint if we require our solution to satisfy it
without violation. In this paper, we are mainly concerned with cardinality constraints.
These are constraints on unweighted sums of variables. Let us give an example where
such hard constraints naturally occur.

The integer splittable flow problem is the following routing problem. Given an undi-
rected graph and several source–sink pairs (s i, ti) together with integral demands di,
we are looking for integer flows fi from si to ti having flow value di such that the max-
imum edge congestion is minimized. Solving the non-integral relaxation and applying
path stripping (cf. [GKR+99]), we end up with this rounding problem: Round a solution
(xP )P of the linear system

Minimize W s. t.
∑
P�e

xP ≤ W, ∀e

∑
P∈Pi

xP = di, ∀i

xP ≥ 0, ∀P

to an integer one such that the first set of constraints is violated not too much and the
second one is satisfied without any violation (hard constraints).

Further examples of rounding problems with hard constraints include other routing
applications ([RT91,Sri01]), many flow problems ([RT87,RT91,GKR +99]), partial and
capacitated covering problems ([GKPS02,GHK+03]) and the assignment problem with
extra constraints ([AFK02]).

For the special case of the above problem where all d i are one, Raghavan and
Thompson [RT87] presented an easy solution: For each i, they pick one P ∈ P i with
probability xP and then set yP = 1 and yP ′ = 0 for all P ′ ∈ Pi \ {P}. For the gen-
eral case, however, this idea and all promising looking extensions fail. Guruswami et
al. [GKR+99] state on the integral splittable flow problem (ISF) in comparison to the
unsplittable flow problem that “standard roundings techniques are not as easily applied
to ISF”.

At FOCS 2001, Srinivasan [Sri01] presented a way to compute randomized round-
ings that respect the constraint that the sum of all variables remains unchanged (one
global cardinality constraint) and fulfill some negative correlation properties.

Gandhi, Khuller, Parthasarathy and Srinivasan [GKPS02] combined the determin-
istic “pipage rounding” algorithm of Ageev and Sviridenko [AS04] with Srinivasan’s
approach to obtain randomized roundings of edge weights in bipartite graphs that are
degree preserving. By this we mean that the sum of weights of all edges incident with
some vertex is not changed by the rounding. The roundings of Gandhi et al. also ful-
fill negative correlation properties, but only on sets of edges incident with a common
vertex.

Both Srinivasan [Sri01] and Gandhi et al. [GKPS02] do not consider the deran-
domization problem. A first derandomization of Srinivasan’s [Sri01] roundings was
given in [Doe05]. For the bipartite edge weight rounding problem, Ageev and Sviri-
denko [AS04] state that any randomized rounding algorithm “will be too sophisticated
to admit derandomization”.



1.3 Our Contribution

In this paper, we extend the work of [Doe05] in several directions.
Randomized roundings with constraints. We show that for all sets of cardinal-

ity constraints, the general problem of generating randomized roundings can be re-
duced to the one for {0, 1

2} vectors. This immediately yields a simpler way to gen-
erate the randomized roundings used in Srinivasan [Sri01], Gandhi et al. [GKPS02],
Sadakane, Takki-Chebihi and Tokuyama [STT01] and [Doe04]. For the rounding prob-
lem of [GKPS02], we even gain an Õ(|V |) factor in the run-time.

Derandomizations with constraints. Since our approach is structurally simpler
than the earlier ones, we do obtain the corresponding derandomizations. In fact, we
may even use classical derandomizations like Raghavan’s. In consequence, derandom-
izing randomized rounding approaches for the bipartite edge weight rounding problem
is much easier than what is conjectured in Ageev and Sviridenko [AS04]. Note that
this derandomization is more than a re-invention of the original algorithm of Ageev
and Sviridenko. It also keeps those rounding errors small for which the randomized
approach allowed the use of Chernoff type large deviation bounds.

Counter-examples. We also show that a number of natural properties of indepen-
dent randomized roundings may not hold in the presence of constraints. For exam-
ple, let f : [0, 1]n → R be non-decreasing, x, x′ ∈ [0, 1]n and y, y′ be independent
randomized roundings of x, x ′ respectively. Then x ≤ x′ (component-wise) implies
E(f(y)) ≤ E(f(y′)). We show that already a single cardinality constraint may inflict
that no randomized roundings respecting this constraint have the above property.

General randomized rounding derandomization. Our final result is not to be
overlooked due to its simple less than a page proof. Here we give an easy O(mn log n)
time derandomization for arbitrary constraint matrices A ∈ ([0, 1]∩Q)m×n that works
in the RAM model. This improves over the O(mn2 log(mn)) time (and 30 pages)
landmark solution of Srivastav and Stangier [SS96]. Note that Raghavan’s derandom-
ization [Rag88] needs to compute the exponential function and in consequence in the
RAM model only works for binary matrices (as pointed out in Section 2.2 of his paper).

2 Randomized Rounding, Constraints and Correlation

For a number r write [r] = {n ∈ N |n ≤ r}, �r	 = max{z ∈ Z | z ≤ r}, 
r� =
min{z ∈ Z | z ≥ r} and {r} = r − �r	. We write z ≈ r if z ∈ {�r	 , 
r�}. We use
these notations for vectors as well (component-wise).

Let x ∈ R. A real-valued random variable y is called randomized rounding of x if
Pr(y = �x	 + 1) = {x} and Pr(y = �x	) = 1 − {x}. Since only the fractional parts
of x and y are relevant, we usually have x ∈ [0, 1]. In this case, we have

Pr(y = 1) = x,

Pr(y = 0) = 1 − x.

For x ∈ Rn, we call y = (y1, . . . , yn) randomized rounding of x if yj is a randomized
rounding of xj for all j ∈ [n].

The algorithmic concept of randomized rounding can be formulated as follows: Fix
a number n ∈ N, the number of variables to be rounded. Let X ⊆ [0, 1] n. This is the set
of vectors for which we allow randomized rounding. Typically, this will be [0, 1] n or a
suitably rich subset thereof. A family (Prx)x∈X of probability distributions on {0, 1}n



is called randomized rounding, if for all x ∈ X , a sample y from Prx is a randomized
rounding of x.

As described in the introduction, we are interested in roundings that satisfy some
hard constraints. Though usually we will only regard cardinality constraints (requiring
the sum of some variable to be unchanged), it will be convenient to encode hard con-
straints in a matrix B. Our aim then is that a rounding y of x satisfies By = Bx. Of
course, if Bx is not integral, this can never be satisfied. We therefore relax the condition
to By ≈ Bx. In a randomized setting, we often obtain the slightly stronger condition
that By is a randomized rounding of Bx.

Besides satisfying hard constraints we still want to keep other rounding errors small
(as does independent randomized rounding). A useful concept here is the one of nega-
tive correlation, which implies Chernoff type large deviation inequalities.

We call a set {Xj | j ∈ S} of binary random variables negatively correlated if for
all S0 ⊆ S, b ∈ {0, 1}, we have Pr(∀j ∈ S0 : Xj = b) ≤ ∏

j∈S0
Pr(yj = b). As

shown in [PS97], this implies the usual Chernoff-Hoeffding bounds on large deviations.
The following version is not strongest possible, but sufficient for most purposes.

Lemma 1. Let {Xj | j ∈ S} be a set of negatively correlated binary random variables
and aj ∈ [0, 1], j ∈ S. Put X =

∑
j∈S ajXj and μ = E(X). Then for all δ ∈ [0, 1],

Pr(X ≥ (1 + δ)μ) ≤ exp(− 1
3μδ2),

Pr(X ≤ (1 − δ)μ) ≤ exp(− 1
2μδ2).

It turns out that hard constraints and negative correlation cannot always be achieved
simultaneously. We therefore restrict ourselves to negative correlation on certain sets of
variables. Let S ⊆ 2[n] be closed under taking subsets, that is, S0 ⊆ S ∈ S implies
S0 ∈ S.

Definition 1. We call (Prx) randomized rounding with respect to B and S, if for all x
a sample y from Prx satisfies the following.

(A1) y is a randomized rounding of x.
(A2) By is a randomized rounding of Bx.
(A3) For all S ∈ S, ∀b ∈ {0, 1} : Pr(∀j ∈ S : yj = b) ≤ ∏

j∈S Pr(yj = b).

In this language, we know the following. Clearly, independent randomized round-
ing is a randomized rounding with respect to the empty matrix B and S = 2 [n]. Srini-
vasan [Sri01] showed that for the 1 × n matrix B = (1 . . . 1), randomized roundings
with respect to B andS = 2[n] exist and can be generated in time O(n). Let G = (V, E)
be a bipartite graph and B = (bij) i∈V

j∈E
its vertex-edge-incidence matrix. For v ∈ V let

Ev = {e ∈ E | v ∈ e}. Gandhi et al. [GKPS02] showed that there are randomized
roundings with respect to B and S = {E0 | ∃v ∈ V : E0 ⊆ Ev}. They can be gen-
erated in time O(mn). From [Doe03,Doe04], we have that if B is totally unimodular,
then randomized roundings with respect to B and S = ∅ exist. Recall that a matrix
is totally unimodular if each square submatrix has determinant −1, 0 or 1. If B is not
totally unimodular, then not even for X = {0, 1

2}n a randomized rounding (Prx)x∈X

with respect to B and S = ∅ exists.
Throughout the paper let A ∈ [0, 1]mA×n and x ∈ [0, 1]n. Let B be a totally

unimodular mB × n matrix.



3 Binary Reductions

A central step of our method is a reduction to the problem of rounding {0, 1
2} vectors,

similar as in Beck and Spencer [BS84]. This reduced rounding problem turns out to
be structurally and computationally much simpler than the general one. We start by
describing the connection between the reduced and the general problem.

3.1 Randomized Roundings

Let S ⊆ 2[n] be closed under taking subsets. Let (Prx)x∈{0, 12}n be a family of prob-
ability distributions on {0, 1}n. We call the family (Prx) basic randomized rounding
with respect to B and S, if for all x ∈ {0, 1

2}n a sample y from Prx satisfies (A1) to
(A3) and

(A4) Prx(y) = Prx(2x − y).

The key result of this subsection is that any basic randomized rounding can be
extended to a randomized rounding (Prx), where x ranges over all vectors in [0, 1]n

having finite binary length. The simple idea is to iterate basic randomized rounding
digit by digit:

Digit by digit rounding: Let x ∈ [0, 1]n having binary length � (that is, all xi can
be written as xi =

∑�
j=0 dj2−j with dj ∈ {0, 1}). There is nothing to show for � = 0,

so assume � ≥ 1. Write x = x′ + 2−�+1x′′ with x′′ ∈ {0, 1
2}n and x′ ∈ [0, 1]n having

binary length at most � − 1. Let y ′′ be a sample from the basic randomized rounding
Prx′′ . Set x̃ := x′ + 2−�+1y′′. Note that x̃ has binary length at most � − 1. Repeat this
procedure until a binary vector is obtained. For each x having finite binary expansion,
this defines a probability distribution Prx on {0, 1}n.

Theorem 1. Let (Prx) be a basic randomized rounding with respect to B and S. Then
(Prx) with x ranging over all [0, 1] vectors having finite binary length is a randomized
rounding with respect to B and S.

Proof. We proceed by induction. If x ∈ {0, 1
2 , 1}n, we simply have Prx = Prx. Let

x therefore have binary length � > 1. Let x = x ′ + 2−�+1x′′ with x′′ ∈ {0, 1
2}n and

x′ ∈ [0, 1]n having binary length at most � − 1. Let y ′′ be a sample from Prx′′ . Set
x̃ := x′ + 2−�+1y′′. Let y be a sample from Prx̃. By construction, y has distribution
Prx.
(A1): Let j ∈ [n]. By induction,

Pr(yj = 1) =
∑

ε∈{0,1}
Pr(y′′

j = ε) Pr(yj = 1 | y′′
j = ε)

=
∑

ε∈{0,1}
Pr(y′′

j = ε)(x′
j + 2−�+1ε) = xj .

(A2): Let i ∈ [mB]. If Bx′′ ∈ Z, then Bx = Bx̃ with probability one and By is a
randomized rounding of Bx for both y being a sample from Pr x and Prx̃. If Bx′′ /∈ Z,
then Pr((Bx′′)i = (Bx′′)i + 1

2 ) = Pr((Bx′′)i = (Bx′′)i − 1
2 ) = 1

2 by (A2).



By induction, we have

Pr((By)i = �(Bx)i	 + 1)
= Pr

(
(Bx̃)i = (Bx)i + 2−�

)
Pr

(
(By)i = �(Bx)i	 + 1

∣∣ (Bx̃)i = (Bx)i + 2−�
)

+

Pr
(
(Bx̃)i = (Bx)i − 2−�

)
Pr

(
(By)i = �(Bx)i	 + 1

∣∣ (Bx̃)i = (Bx)i − 2−�
)

= 1
2 ({(Bx)i} + 2−�) + 1

2 ({(Bx)i} − 2−�) = {(Bx)i}.

(A3): Let S ∈ S. Note that
∏

j∈S(x′
j + 2−�+1εj) +

∏
j∈S(x′

j + 2−�+1(2x′′
j − εj)) ≤

2
∏

j∈S xj holds for all roundings ε of x′′. Hence by induction and (A4),

Pr(∀j ∈ S : yj = 1)

=
∑

ε∈{0,1}n

Pr(y′′ = ε) Pr((∀j ∈ S : yj = 1) | y′′ = ε)

≤
∑

ε∈{0,1}n

Pr(y′′ = ε)
∏
j∈S

(x′
j + 2−�+1εj)

= 1
2

∑
ε∈{0,1}n

Pr(y′′ = ε)
( ∏

j∈S

(x′
j + 2−�+1εj) +

∏
j∈S

(x′
j + 2−�+1(2x′′

j − εj))
)

≤ 1
2

∑
ε∈{0,1}n

Pr(y′′ = ε) · 2
∏
j∈S

xj =
∏
j∈S

xj .

A similar argument shows the claim for b = 0. ��

3.2 Derandomizations

In this subsection, we extend the binary expansion method to the derandomization prob-
lem. A randomized rounding derandomization (with constant c) is an algorithm that
computes for given A ∈ [0, 1]mA×n and x ∈ [0, 1]n a y ∈ {0, 1}n such that for all
i ∈ [mA],

|(Ax)i − (Ay)i| ≤ c
√

max{(Ax)i, ln(2mA)} ln(2mA).

It thus achieves (with minor loss) the existential bounds given by randomized rounding.
The following derandomizations are known.
(i) If A ∈ {0, 1}mA×n and x ∈ {0, 1

2 , 1}n, then Spencer’s [Spe94] method of
conditional probabilities yields a straight-forward O(mAn)–time derandomization with

constant c =
√

1
2 . Note that the conditional probabilities in this special case are easy to

compute via binomial coefficients.
(ii) Raghavan’s derandomization [Rag88] via so-called pessimistic estimators is

more complicated, but allows a wider range of vectors. Still in time O(mAn), it
achieves the constant c = e − 1. In the RAM model, it works for all A ∈ {0, 1}mA×n

and x ∈ ([0, 1]∩Q)n. If one allows precise computations with real numbers in constant
time (in particular exponential functions), then this extends to arbitrary A ∈ [0, 1] mA×n.

(iii) Srivastav and Stangier [SS96] give a derandomization for all A ∈ ([0, 1] ∩
Q)mA×n in the RAM model, though at the price of an increased run-time of
O(mAn2 log(mAn)). Also, it is quite complicated from the view-point of implementa-
tion. The constant c is not explicitly stated in the paper, but by plugging in the inequality
of Angluin-Valiant given there, one achieves c =

√
3.



(iv) In the last section of this paper, we show how to use the binary expansion ideas
to obtain a relatively simple derandomization that works for all A ∈ ([0, 1] ∩ Q)mA×n

and x ∈ ([0, 1] ∩ Q)n in time O(mAn log n) in the RAM model. The constant in this
case is 4(e − 1)(1 + o(1)).

For � ∈ N and c ∈ R≥0 let f(�, c) = c
�∑

i=1

2−(i−1)/2
�∏

j=i+1

(1 + 2−(j−1)/2c)1/2.

Theorem 2 (Digit by digit derandomization). Let A be an algorithm which for some
matrix A and any x ∈ {0, 1

2 , 1}n computes a rounding y of x such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ c
√

max{(Ax)i, ln(2mA)} ln(2mA).

Then for each x ∈ [0, 1]n having binary length �, a rounding y such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ f(�, c)
√

max{(Ax)i, ln(2mA)} ln(2mA)

can be computed by � times invoking A.

We omit the proof for reasons of space. Similar as in the proof of Theorem 1, we use
induction over the length of the binary expansion. Some care has to be taken to control
the size of (Ax̃)i for the intermediate roundings x̃.

We end this section with some rough estimates of the constants f(c, �).

Lemma 2. f(c) := lim�→∞ f(�, c) exists for all c and satisfies f(c) = cO(log c). We

have f(
√

1
2 ) ≤ 4, f(e − 1) ≤ 18, and f(

√
3) ≤ 19.

Let us remark that the increase in the constant in most cases in not as bad as f(c) =
cΘ(log c) suggests. If log mA = o((Ax)i), then a closer look at the proof of Theorem 2
yields |(Ax)i−(Ay)i| ≤ 2(

√
2+1)(1+o(1))c

√
(Ax)i ln(2mA). Hence asymptotically

we only lose a factor of less than 5 in the large deviation bound. In fact, already if
(Ax)i ≥ c2 ln(2mA), we obtain a bound of |(Ax)i − (Ay)i| ≤ 7c

√
(Ax)i ln(2mA).

4 Randomized Roundings with Disjoint Constraints

We now use the binary expansion method developed in the previous section to generate
randomized roundings that satisfy disjoint cardinality constraints. Hence throughout
this section ;et B ∈ {0, 1}mB×n and ‖B‖1 := maxj

∑
i |bij | = 1. For the generation

of the roundings, this is a microscopic extension of Srinivasan’s [Sri01] result. The
reader’s focus should therefore be on the simplicity of our approach.

As should be clear by now, all we have to do is analyze the {0, 1
2} case. Let us

assume that B is stored in some O(n) space datastructure allowing amortized linear
time enumerations of the sets {j ∈ [n] | bij = 1} for all i ∈ [mB ].

Lemma 3. There are basic randomized roundings (Prx,B) with respect to B and 2[n].
A sample from (Prx,B) can be generated in time O(n).

Proof. Let x ∈ {0, 1
2}n. For i ∈ [mB] let Ei := {j ∈ [n] |xj = 1

2 , bij = 1}. Choose
a set M of disjoint 2–subsets of [n] such that |Ei \

⋃M| ≤ 1 and |M ∩ Ei| �= 1 hold
for all i ∈ [mB] and M ∈ M. In other words, M is a maximal collection of disjoint
2–sets of [n] that all intersect all Ei in a trivial way1.

1 As we will see, the particular choice of M is completely irrelevant. Assume therefore that we
have fixed some deterministic way to choose it (e.g., greedily in the natural order of [n]).



For each {j1, j2} independently we flip a coin to decide whether (y j1 , yj2) = (1, 0)
or (yj1 , yj2) = (0, 1). For all j ∈ [n] \ ⋃M let yj be a randomized rounding of
xj independent from all other random choices. The above defines a basic randomized
rounding (Prx,B) with respect to B and 2[n]. ��

From Theorem 1 and 3, the following is immediate.

Theorem 3. There are randomized roundings (Prx,B) with respect to B and 2[n]. A
sample from (Prx,B) can be generated in time O(n�), where � is the binary length of x.

We now derandomize the construction above. Here the simpler, compared to previ-
ous work more sequential construction proves to be advantageous. As before, we only
have to analyze the 0, 1

2 case.

Lemma 4. Let A be an mA × n matrix. Let x ∈ {0, 1
2}n. Then a binary vector y such

that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ 2c
√

max{(Ax)i, ln(4mA)} ln(4mA)

can be computed by applying a derandomization to a 2m A×n matrix with entries from
{aij | i ∈ [mA], j ∈ [m]}.

The proof is again omitted for reasons of space. The main idea is to note that the
rounding errors inflicted by the matching rounding of Lemma 3 can be written as a
weighted sum of binary random variables representing the coin flips.

Combining Theorem 2 and Lemma 4 with the derandomizations cited in Sec-
tion 3.2, we obtain the following derandomized version of Srinivasan’s results.

Theorem 4. Let A ∈ [0, 1]mA×n. Let x ∈ [0, 1]n. Then for all � ∈ N, a binary vector
y can be computed such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ f(�, 2c)
√

max{(Ax)i, ln(4mA)} ln(4mA) + n2−�

This has a time complexity of � times the one of applying a derandomization to a 2m A×
n matrix with entries in {aij | i ∈ [m], j ∈ [n]}.

Some bounds on constants that are relevant in connection with the derandomizations
mentioned in Subsection 3.2 are f(2

√
1
2 ) ≤ 13, f(2e − 2) ≤ 90, and f(2

√
3) ≤ 92.

However, the remark following Lemma 2 also applies to the theorem above, i.e., for
(Ax)i large compared to ln(4mA), the increase in the constants become less significant.

5 Bipartite Edge Weight Rounding

In this section, we consider sets of cardinality constraints where each variable may
be contained in up to two constraints. Throughout this section, let B =

(
B1
B2

)
, where

the Bi are 0, 1 matrices such that ‖Bi‖1 = 1. We assume that B is represented by a
datastructure allowing constant time queries of type “given i, find j such that b ij = 1”
and “given j, find i such that bij = 1”.

For such constraints, negative correlation on S = 2 [n] is too much to ask for. We
restrict ourselves to SB = {S ⊆ [n] | ∃i ∈ [mB] ∀j ∈ S : bij = 1}.



Problems of this type have been regarded in Gandhi et al. [GKPS02]. They used a
formulation as rounding problem for edge weights in bipartite graphs. We briefly fix the
connection.

Bipartite edge weight rounding problem: Given a bipartite graph G = (U ∪̇V, E)
and edge weights x ∈ [0, 1]E , find y ∈ {0, 1}E such that (B1) ye is a randomized
rounding of xe for all e ∈ E, (B2)

∑
e�v ye ≈ ∑

e�v xe for all v ∈ U ∪ V and (B3) for
all v ∈ U ∪ V , S ⊆ {e ∈ E | v ∈ E} and b ∈ {0, 1}, we have Pr(∀i ∈ S : ye = b) ≤∏

e∈S Pr(ye = b).
The bipartite edge weight rounding problem is easily seem to be captured by our

setting: Define B1 = (bue) ∈ {0, 1}U×E through bue = 1 if and only if u ∈ e as well
as B2 = (bve) ∈ {0, 1}V×E through bve = 1 if and only if v ∈ e. Then By ≈ Bx
for some x ∈ [0, 1]E , y ∈ {0, 1}E is just the degree preservation condition (B2). Also,
negative correlation on SB is equivalent to (B3).

The bipartite edge weight rounding problem for edge weights 0 (‘no edge’, if you
like) and 1

2 is easily solved. Here the pipage rounding idea of [AS04] fixes each variable
to an integer value in amortized constant time. This saves an O(|V |) run-time factor
compared to the general case.

Lemma 5. There are basic randomized roundings with respect to B and S. They can
be sampled in time O(n).

The lemma above together with the general reduction of Theorem 1 yields the fol-
lowing version of the bipartite edge weight rounding result of Gandhi et al. Note that
the time complexity here is superior to the O(|E||V |) bound of Gandhi et al. [GKPS02]
(unless we are working with an overly high precision �).

Theorem 5. There are randomized roundings (Prx,B) with respect to B and 2[n]. A
sample from (Prx,B) can be generated in time O(n�), where � is the binary length of x.

Again, the randomized algorithm above can be derandomized.

Lemma 6. Let A ∈ [0, 1]mA×n. Assume that for each iA ∈ [mA] there is an iB ∈ [mB]
such that for all j ∈ [n], biBj = 1 whenever aiAj �= 0. Let x ∈ {0, 1

2}n. Then a binary
vector y such that By ≈ Bx and

|(Ax)i − (Ay)i| ≤ 2c
√

max{(Ax)i, ln(4mA)} ln(4mA)

for all i ∈ [mA] can be computed by applying a derandomization to a matrix of dimen-
sion at most 2mA × n with entries from {aij | i ∈ [mA], j ∈ [n]}.

Combining the Lemma 6 with Theorem 2, we obtain the following derandomization
of the result of Gandhi et al.

Theorem 6. Let A ∈ [0, 1]mA×n such that for each iA ∈ [mA] there is an iB ∈ [mB]
such that for all j ∈ [n], biBj = 1 whenever aiAj �= 0. Then for all � ∈ N, a binary
vector y can be computed such that By ≈ Bx and

∀i ∈ [mA] : |(Ax)i − (Ay)i| ≤ f(�, 2c)
√

max{(Ax)i, ln(4mA)} ln(4mA) + n2−�.

The time complexity is � times the one of a derandomization for 2m × n matrices with
entries from {aij | i ∈ [mA], j ∈ [m]}.



6 Other Constraints

It is relatively easy to see that Theorems 3, 4, 5 and 6 can be extended to include hard
constraint matrices B ∈ {−1, 0, 1} as long as B is totally unimodular. An extension
to further values, however, is not possible. Also, Theorems 3 and 4 can be extended
to other sparsely intersecting constraints than the ones of Section 5. We now give two
examples involving substantially different hard constraints.

Sequence Rounding. In connection with an image processing application, Sadakane,
Takki-Chebihi and Tokuyama [STT01] compute roundings of sequences such that the
rounding errors in all intervals are less than one. This is in fact a classical problem, but
the new aspect in their work is that they need a randomized solution as this is less likely
to produce unwanted structures in the images. The approach taken in [STT01] is via
efficiently computing several roundings and then taking a random one.

A simpler way using the framework of this paper is to compute a randomized round-
ing y of x ∈ [0, 1]n with the additional constraints that for each interval I ⊆ [n],∑

i∈I yi is a randomized rounding of
∑

i∈I xi. To do so, we have to understand this
problem for 0, 1

2 sequences, which is trivial.

Matrix Rounding. Asano et al. [AKOT03] model the digital halftoning problem as
matrix rounding problem. For X ∈ [0, 1]m×n and Y ∈ {0, 1}m×n, they set

d(X, Y ) :=
∑

i∈[m−1]
j∈[n−1]

∣∣∣
∑

k,�∈{0,1}
(xi+k,j+� − yi+k,j+�)

∣∣∣.

They claim that the image represented by Y is a good halftoning of the image repre-
sented by X , if d(X, Y ) is small. The current best solution for computing good round-
ings with respect to this error measure uses dependent randomized roundings [Doe04].
Let Y be a randomized rounding of X with respect to the constraints 2

yi,j + yi,j+1 ≈ xi,j + xi,j+1, i ∈ [m], j ∈ [n − 1],
yi,j + yi+1,j ≈ xi,j + xi+1,j , i ∈ [m − 1] odd, j ∈ [n],
yi,j + yi,j+1 + yi+1,j + yi+1,j+1 ≈ xi,j + xi,j+1 + xi+1,j + xi+1,j+1,

i ∈ [m − 1] odd, j ∈ [n − 1].

Then E(d(X, Y )) ≤ 0.55 holds for all X . The existence of such dependent roundings
easily follows from the totally unimodularity condition. However, actually computing
them in linear time involves tedious case distinctions.

With the reduction of Theorem 1, life is much easier since we only have to re-
gard X ∈ {0, 1

2}m×n. In this case, a constraint of the third type is either implied by
constraints of the first two kinds, or it contains exactly two non-integral variables. All
constraints thus yield a bipartite graph G = ([m]× [n], E) with {(i1, j1), (i2, j2)} ∈ E
telling us that exactly one of yi1,j1 and yi2,j2 has to become one, and these are all
constraints. This makes it easy to compute such a rounding: For each connected com-
ponent of G, flip a fair coin to decide which of the two classes of the bipartition shall
be rounded to one, and set the other variables to zero.

2 Here we use the notation y ≈ x to denote that y is a randomized rounding of x.



7 A Word of Warning

We have to note that dependencies like cardinality constraints inflict that some natu-
ral properties are unexpectedly not satisfied. Call a function f : {0, 1}n → R non-
decreasing if y ≤ z (component-wise) implies f(y) ≤ f(z).

(i) There are S ⊆ [n] such that the roundings of Section 4 and 5 make x �→
Prx(∀i ∈ S : yi = 1) not non-decreasing.

(ii) The compared to (A3) stronger property that for all disjoint S, T ⊆ [n], one
has Prx(y|S ≡ 1 | y|T ≡ 1) ≤ Prx(y|S ≡ 1) also does not hold for the roundings
of Section 4 and 5. This is the reason why in [GKPS02] this property could only be
proven for a single cardinality constraint and only by prescribing a particular order for
the individual roundings.

(iii) There are non-decreasing functions f such that any randomized rounding with
respect to a single cardinality constraint makes x �→ Ex(f) not non-decreasing.

All these phenomena, of course, are not possible for independent randomized round-
ings.

Let us also mention the following. A distribution on {0, 1}n is negatively associated
(NA), if for all non-decreasing f, g : {0, 1}n → R≥0 we have E(fg) ≤ E(f)E(g).
The distributions of Section 4 and 5 are not (NA).

8 General Derandomization

In this section, we improve and simplify the derandomization result of Stangier and
Srivastav [SS96]. Recall from Section 3.2 that Raghavan’s derandomization in the RAM
model only works for binary matrices. This problem was solved in [SS96], though at the
price of a significantly higher time complexity of O(mn2 log(mn)). Also, this approach
is hard to implement due to its technical demands. We overcome these difficulties by
reducing the general problem to Raghavan’s setting and obtain the following result.

Theorem 7. Let A ∈ ([0, 1]∩Q)m×n, x ∈ ([0, 1]∩Q)n and � ∈ N. Then a y ∈ {0, 1}n

such that

|(Ax)i − (Ay)i| ≤ 2(e − 1)
√

max
{
(Ax)i, ln(2�m)

}
ln(2�m) + 2−�n

holds for all i ∈ [m] can be computed in time O(mn�) in the RAM model.

Proof (Sketch). Use the binary expansion A =
∑�

k=1 2−kA(k) of A and apply Ragha-
van’s derandomization to the �m × n matrix obtained from stacking the A (i). ��

Note that if we choose � = 
log2 n�, the additive extra term is at most one. Note
also, that then the ln(2�m) term is just a factor away from the usual ln(2m): We may
assume m ≥ log n. Otherwise using linear algebra we may transform x into a vector
x′ such that Ax = Ax′ and at most m components of x′ are not 0 or 1. But if � =

log2 n� ≤ 2m, then ln(2�m) ≤ 2 ln(2m).

Finally, note the following. By combining Lemma 4 with the elementary derandom-
ization for {0, 1

2 , 1} vectors in Section 3.2, we obtain a very elementary and simple to
implement algorithm for arbitrary vectors and binary matrices.
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