
A THEORETICAL VIEW OF
DISTRIBUTED SYSTEMS

Nancy Lynch, MIT EECS, CSAIL
ICDCS, July 8, 2019

Theory for Distributed Systems
• We have worked on theory for distributed systems, trying to

understand (mathematically) their capabilities and limitations.
• This work has included:

• Defining abstract, mathematical models for problems solved by
systems, and for the algorithms used to solve them.

• Producing proofs of correctness, performance, fault-tolerance.
• Proving impossibility results and lower bounds, expressing inherent

limitations of distributed systems for solving problems.
• Developing new algorithms.
• Developing foundations for modeling, analyzing distributed systems.

• Kinds of systems:
• Distributed data-management systems.
• Wired, wireless communication systems.
• Biological systems: Insect colonies, developmental biology, brains.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

1. Algorithms for Traditional Distributed
Systems

• Mutual exclusion in shared-memory systems, resource
allocation: Fischer, Burns,…late 70s and early 80s.

• Dolev, Lynch, Pinter, Stark, Weihl. Reaching approximate
agreement in the presence of faults. JACM,1986.

• Lundelius, Lynch. A new fault-tolerant algorithm for clock
synchronization. Information and Computation,1988.

• Dwork, Lynch, Stockmeyer. Consensus in the presence of
partial synchrony. JACM,1988. Dijkstra Prize, 2007.

Dwork, Lynch, Stockmeyer [DLS]
“This paper introduces a number of practically motivated
partial synchrony models that lie between the completely
synchronous and the completely asynchronous models and in
which consensus is solvable.
It gave practitioners the right tool for building fault-tolerant
systems and contributed to the understanding that safety can
be maintained at all times, despite the impossibility of
consensus, and progress is facilitated during periods of
stability.
These are the pillars on which every fault-tolerant system has
been built for two decades. This includes academic projects,
as well as real-life data centers, such as the Google file
system.”

Distributed consensus
• Processors in a distributed network want to agree on a

value in some set ܸ.
• Each processor starts with an initial value in ܸ, and they

want to agree on a value in ܸ.
• But some of the processors might be faulty (stopping, or

Byzantine).
• Agreement: All nonfaulty processors agree.
• Validity: If all processors have the same initial value ݒ, then
ݒ is the only allowed decision for a nonfaulty processor.

• Problem arose as:
• The Database Commit problem [Gray 78].
• The Byzantine Agreement problem (for altitude sensor readings)

[Pease, Shostak, Lamport 80].

[DLS] contributions
• Considers a variety of partial synchrony models, with

different processor rate and message-delay assumptions.
• Considers a variety of failure models: stopping failures,

Byzantine failures, Byzantine failure with authentication,
sending and receiving omission failures,…

• Gives algorithms to reach agreement in all cases,
guaranteeing agreement and validity always, and
termination when the system’s behavior stabilizes.

• Key algorithmic ideas:
• Different processors try to take charge of reaching agreement.
• Rotating coordinator.
• Must reconcile to avoid contradictory decisions.

[DLS] contributions
• E.g., consider stopping failures, synchronous rounds.
• Messages may be lost, but after some Global Stabilization Time, all

messages between nonfaulty processors are delivered.
• 4-round phases, coordinator ݌௜, ݅	 ൌ 	݇	mod	݊, at phase ݇.
• A processor may lock a value ݒ with phase number ݇, meaning that

it thinks that the coordinator might decide ݒ at phase ݇.
• Phase ݇, coordinator ݌௜ , ݅	 ൌ 	݇	mod	݊

• Round 1: Each processor ݌௝	sends “acceptable” decision values (known to
be someone’s initial value, ݌௝	 doesn’t hold a lock on a different value) to ݌௜;
ݒ tries to find a value	௜݌ to propose, acceptable to a majority of processors.

• Round 2: ݌௜ broadcasts proposed value ݒ, recipients lock ሺݒ, ݇ሻ.
• Round 3: Those who locked ሺݒ, ݇ሻ	send acks to ݌௜; if ݌௜ receives a majority

of acks, decides ݒ.
• Round 4: Cleanup, exchange lock info, release older locks.

[DLS] contributions
• Phase ݇, coordinator ݌௜ , ݅	 ൌ 	݇	mod	݊

• Round 1: Send acceptable decision values to	݌௜;	݌௜	tries to pick a
value ݒ to propose, one that is acceptable to a majority of
processors.

• Round 2: ݌௜ broadcasts proposed value ݒ, recipients lock ሺݒ, ݇ሻ.
• Round 3: Those who locked ሺݒ, ݇ሻ	send acks to ݌௜; if ݌௜ receives

majority of acks, decides ݒ.
• Round 4: Cleanup, exchange lock info, release older locks.

• Some ideas inspired by [Skeen 3-phase commit].
• [Paxos] consensus protocol uses similar ideas.

݅	

Other Work on Algorithms for
Traditional Distributed Systems
• Concurrency control for nested transactions
• Distributed shared memory
• Group communication
• RAMBO, dynamic atomic memory

Concurrency Control Algorithms for
Nested Transactions

• Lynch, Merritt, Weihl, Fekete. Atomic Transactions in
Concurrent/Distributed Systems. Morgan Kaufmann, 1993.

• Background:
• Transactions, concurrency control: [Gray], [Bernstein, Goodman].
• Extensions to nested transactions: [Liskov]
• Systems papers, implementations, little theory.

• Our contributions:
• Modeled nested transactions rigorously.
• Described existing algorithms precisely,

generalized them.
• Proved correctness.

• Many papers, book.

஛ܶ

଴ܶ଴

ଵܶ଴ܶ

଴ܶଵ଴

ଵܶ଴଴ܶଵ

଴ܶ଴଴ ଵܶ଴଴଴ܶଵଵ

• General theory for nested transactions, including a general
Atomicity Theorem that provides a compositional method
for proving correctness of concurrency control algorithms

• Lock-based algorithms.
• Timestamp-based algorithms.
• Hybrid locking/timestamp algorithms.
• Optimistic concurrency control
algorithms.

• Orphan management algorithms.
• Replicated data mgmt. algorithms.
• All rigorously, in terms of the I/O
automata modeling framework.

Concurrency Control Algorithms for
Nested Transactions

Distributed Shared Memory

• Fekete, Kaashoek, Lynch. Implementing
sequentially consistent shared objects using
broadcast and point-to-point communication.
ICDCS, 1995. JACM, 1998.

[Fekete, Kaashoek, Lynch, 1988]
• Considered an algorithm to implement sequentially consistent

read/update shared memory, using basic broadcast and
point-to-point communication services as in Amoeba.

• Based on Orca language/system [Bal, Kaashoek, Tanenbaum
93], for writing applocations for clusters of workstations.

• Orca defines an abstract Multicast
Channel, with strong ordering and
causality properties.

• Implements the Multicast Channel over
basic broadcast and point-to-point
communication services, using a
sequence-number-based protocol.

• Implements sequentially consistent
memory over any Multicast Channel,
using a partial replication strategy
(read any copy, update all copies).

Seq. Cons.
Memory Impl.

Multicast
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel

[FKL] contributions
• We specified the message delivery and ordering

requirements of the Multicast Channel formally.
• Defined a sequence-number-based algorithm to implement

the Mcast Channel over the basic communication services.
• Tried to prove the algorithm correct.
• But, we discovered an algorithmic

error in the Orca implementation:
• Didn’t piggyback needed sequence

numbers on certain response
messages.

• Error was fixed in the system.
• Completed the proof.

Seq. Cons.
Memory Impl.

Multicast
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel

[FKL] contributions, cont’d
• Defined a sequence-number-based algorithm to implement the

Multicast Channel over the basic communication services,
proved it correct.

• We defined a partial-replication
algorithm to implement sequentially
consistent memory over the Mcast
Channel, generalizing the Orca
algorithm.

• Developed a new proof technique
for proving sequential consistency.

• Using I/O automata, composition,
abstraction.

Seq. Cons.
Memory Impl.

Multicast
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel

Group Communication Services

• Hickey, Lynch, van Renesse. Specifications and
proofs for Ensemble layers. TACAS, 1999.

• Fekete, Lynch, Shvartsman. Specifying and using
a partitionable group communication service.
PODC, 1997, TOCS, 2001.

[Hickey, Lynch, van Renesse, 1999]
• We studied the Ensemble Group Communication (GC)

system of Hayden, van Renesse, Birman, et al.
• Ensemble supports distributed programming by providing

guarantees for synchronization,
message ordering, message delivery.

Layer 3

Layer 2

Client Client Client

Layer 1

• Tolerates failures and recoveries.
• Organizes processors into views, with

consistency guarantees for message
deliveries within views.

• Different combinations of guarantees
encapsulated into (~50) different
layers.

[HLvR] contributions
• We studied two key Ensemble layers, and the relationship

between them, formally, using I/O automata:
• Ensemble Virtual Synchrony (EVS),
• Ensemble Total Order (ETO),
• EVStoETO, distributed algorithm that uses VS to implement TO.

• Ensemble Virtual Synchrony:
• Basic GC semantics, processors join and

leave views.
• Messages sent in a view are delivered in the

same view, FIFO for each (sender, receiver)
pair, same messages to all receivers.

• Ensemble Total Order:
• Adds consistent global total order and

causal order guarantees. Virtual
Synchrony

Client Client Client

EVS-
to-

ETO

EVS-
to-

ETO

EVS-
to-

ETO

Total Order

[HLvR] contributions, cont’d
• EVS:

• GC, views.
• Messages sent and delivered in same view, FIFO for each (sender,

receiver) pair, same messages to all receivers.
• ETO:

• Adds total order, causal order guarantees.
• EVStoETO:

• 2-phase token-based algorithm.
• Proved that the composition VS +

EVStoETO implements ETO.
• Implementation is a simulation

relation. Virtual
Synchrony

Client Client Client

EVS-
to-

ETO

EVS-
to-

ETO

EVS-
to-

ETO

Total Order

[HLvR] contributions, cont’d
• Discovered an algorithmic error in the Ensemble

implementation:
• Some message deliveries in the implementation were not allowed by

the ETO specification

• Problem showed up in one step of the
simulation proof.

• Error was fixed in the system.
• Completed the proof.
• Using I/O automata, composition,

abstraction.

Virtual
Synchrony

Client Client Client

EVS-
to-

ETO

EVS-
to-

ETO

EVS-
to-

ETO

Total Order

[Fekete, Lynch, Shvartsman, 1997, 2001]
• Similar, for partitionable group communication services as in

Transis, Totem, Horus systems.
• Virtual Synchrony services, allowing concurrent views that

can partition processors, repair partitions.

Partitionable
Virtual Synchrony

Client Client Client

VS-
to-TO

VS-
to-TO

VS-
to-TO

Total Order

• Guarantees for message ordering,
causality, delivery guarantees,
accommodating partitions and repairs.

• Previous specifications, complicated,
ambiguous, inconsistent…

• We gave a new specification, showed
how to use it to implement (non-view-
oriented TO broadcast), and
sequentially consistent memory.

Summary: System modeling
and proofs
• Using automata-based formal methods,

we modeled, verified many distributed
data-management systems, especially
those with strong consistency
requirements.

• Specified required properties formally.
• Defined abstract versions of systems

algorithms.
• Clarified ambiguities.
• Proved the algorithms correct.
• Found and fixed algorithmic errors in

implemented systems. VS

VS-
to-
TO

VS-
to-
TO

VS-
to-
TO

TO

Reconfigurable Atomic Memory
• Lynch, Shvartsman. RAMBO: A reconfigurable atomic

memory service for dynamic networks. DISC, 2002.
• Gilbert, Lynch, Shvartsman. RAMBO II: Rapidly

Reconfigurable Atomic Memory for Dynamic Networks.
DSN, 2003.

• Gilbert, Lynch, Shvartsman. RAMBO: A Robust,
Reconfigurable Atomic Memory Service for Dynamic
Networks. Distributed Computing, 2010.

Goal
• Implement atomic Read/Write shared memory in a dynamic

network setting.
• Atomic (linearizable) memory “looks like” centralized shared memory.
• Participants may join, leave, fail during computation.
• Mobile networks, peer-to-peer networks.

• High availability, low latency.
• Atomicity in spite of asynchrony and change.
• Good performance under limits on asynchrony and change.
• Applications:

• Teams of soldiers in a ground-based
military operation.

• Teams of first responders in a disaster.

Atomic Memory in Static Networks
[Attiya, Bar-Noy, Dolev 95]

• Read-quorums, write-quorums of processors; every read-
quorum intersects every write-quorum.

• Replicate objects everywhere, with version tags.
• To Read: Contact a read-quorum, determine the latest

version, propagate it to a write-quorum, return it.
• To Write: Contact a read-quorum, determine the latest tag,

choose a larger tag, write (tag,value) to a write-quorum.

• Operations proceed concurrently, interleaving at fine
granularity; still guarantees atomicity.

RAMBO algorithm

• Reconfigurable Atomic Memory for Basic Objects
(= reconfigurable atomic Read/Write shared memory).

• Uses configurations, each with:
• members, a set of processors,
• read-quorums, write-quorums

• Objects replicated at all members of ܥ.
• Reads and Writes access quorums of ܥ, as in ABD;

handles small, transient changes.
• To handle larger, more permanent changes, reconfigure to

a new configuration ܥ’, moving object copies to members
of ܥ’.	

RAMBO

• Main algorithm + Reconfiguration
service

• Reconfiguration service:
• Supplies a consistent sequence of configurations.
• Triggered by external reconfiguration requests.

• Main algorithm:
• Handles reading and writing of objects.
• Removes old configurations, in the background.
• Reads/Writes use all currently-active configurations.

• All activities proceed concurrently, interleaving at fine
granularity; still guarantees atomicity.

ReconNet

RAMBO

Recon

RAMBO Algorithm structure

Reads and Writes
• Two-phase protocol:
• Phase 1: Collect object info (values and tags) from read-

quorums of all known active configurations.
• Phase 2: Propagate latest object info to write-quorums of all

known active configurations.

• Many Read/Write operations may execute concurrently.
• Quorum intersection properties guarantee atomicity.
• Each phase terminates by a fixed-point condition, involving a

quorum from each known active configuration.

Removing old configurations
• “Garbage-collect” them in the background.
• Another two-phase protocol:
• Phase 1: For each old configuration ܥ:

• Inform a write-quorum of ܥ about the new configuration.
• Collect object information from a read-quorum of ܥ.

• Phase 2:
• Propagate latest object information to a write-quorum of

the new configuration.

• GC proceeds concurrently with Reads and Writes,
interleaving at fine granularity; still guarantees atomicity.

• Uses consensus to determine successive configurations.
• Members of old configuration can propose new configuration.
• Proposals reconciled using consensus.
• Consensus is a heavyweight mechanism, but:

• Used only for reconfigurations, should be infrequent.
• Does not delay Read/Write operations.

Consensus

Recon

Net

Implementation of Recon

Implementing consensus

• All using Timed I/O Automata.

• Partial-order method for proving atomicity.
• Method has been used for other algorithms, e.g. [Nicolaou,

Cadambe, Prakash, Konwar,…, ICDCS 2019].

decide(v) init(v)
init(v)

Consensus

• Can use DLS, or Paxos.
• Agreement, validity always

guaranteed.
• Termination guaranteed when

underlying system stabilizes.

Compare with Paxos [Lamport 98]:
• In Paxos, consensus used for each successive operation,

including Reads, Writes, and Recons.
• Completion of every operation depends on termination of

consensus.
• In RAMBO, consensus used for Recons only.

• However, RAMBO supports only Reads and Writes, whereas
Paxos can support more powerful read-modify-write
operations.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

2. Impossibility Results
• Distributed algorithms have strong inherent limitations,

because they must work in difficult settings:
• Local knowledge only.
• Uncertainties, about remote inputs, timing, failures.

• Theoretical models enable actual proofs of such limitations.
• [Cremers, Hibbard 76]:

• Shared-memory, Boolean shared variables, arbitrary operations.
• Fair Mutual Exclusion: Every process(or) that requests the resource

eventually gets it.
• Unsolvable for two processes with one Boolean

shared variable.
1݌ 2݌

ݔ

Impossibility Results: Mutual Exclusion
• Burns, Jackson, Lynch, Fischer, Peterson. Data

requirements for implementation of ݊-process mutual
exclusion using a single shared variable. JACM, 1982.

• Burns, Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 1993 (actually
proved in ~1980).

1݌ 2݌

1ݔ

݊݌

2ݔ

[Burns, Lynch 93]
• Theorem: Mutual exclusion for ݊ processes, using

read/write shared memory, requires 	݊ shared variables.
• Even if:

• Fairness is not required, just progress.
• Everyone can read and write all variables.
• Variables are of unbounded size.

• Example: ݊	 ൌ 	2
• Suppose 1݌ and 2݌	solve mutual exclusion with progress, using one

read/write shared variable ݔ.
• Suppose 1݌ arrives, wants the resource. By the progress

requirement, it must be able to get it.
• Along the way, 1݌ must write to ݔ: If not, 2݌ wouldn’t know 1݌ was

there, so it could get the resource too, contradicting mutual exclusion.

1݌ 2݌

ݔ

Contradicts mutual exclusion!

1݌ arrives 1݌ gets the
resource

1݌ writes ݔ

2݌ gets the
resource

2݌ writes ݔ

1݌ writes ݔ,
overwriting 2݌

1݌ gets the
resource

[Burns, Lynch] lower bound,

• Mutual exclusion with ݊ processes, using read/write
shared memory, requires n shared variables:

• Argument is more intricate, same key ideas:
• Writing to a shared variable overwrites previous contents.
• Process sees only its own state and the values it reads

from shared variables.

With processes…

1݌ 2݌

1ݔ

݊݌

2ݔ

Impossibility Results: Consensus
• Fischer, Lynch. A lower bound for the time to assure

interactive consistency. IPL, 1982.
• Chaudhuri, Herlihy, Lynch, Tuttle. Tight bounds for ݇-set

agreement. JACM, 2000.
• Fischer, Lynch, Paterson: Impossibility of distributed

consensus with one faulty process. PODS, 1983; JACM,
1985.

• Fischer, Lynch, Merritt. Easy impossibility proofs for
distributed consensus problems. Dist. Comp., 1986.

Distributed consensus
• Processes in a distributed network want to agree on a value

in some set ܸ.
• Each process starts with an initial value in ܸ, and they want

to agree on a value in ܸ.
• Some processes might be faulty (stopping, or Byzantine).
• Agreement: All nonfaulty processes agree.
• Validity: If all processes have the same initial value ݒ, then
ݒ is the only allowed decision for a nonfaulty process.

[Fischer, Lynch 82]
• Consensus in synchronous systems.
• All known algorithms had used rounds to reach
consensus in the presence of up to faulty processes.

• We showed that this is inherent: rounds are
needed in the worst case, even for stopping failures.

• Proof idea: Assume an -round agreement
algorithm tolerating faults, get a contradiction.

• Assume:
• ݊-node complete graph:
• Binary decisions, ܸ	 ൌ 	 ሼ0,1ሽ
• Decisions right after round ݂.
• All-to-all communication at every round.

Special case:
• Theorem 1: There is no ݊-process 1-fault stopping agreement

algorithm in which nonfaulty processes always decide at the
end of round 1.

• Proof:
• By contradiction. Suppose there is such an algorithm.
• Construct a chain of executions, each with ൑ 1 failure, so that:

• First execution must have (unique) decision value 0.
• Last must have decision value 1.
• Any two consecutive executions are indistinguishable to some

process ݅ that is nonfaulty in both. So ݅	must decide the same in
both executions, and the two executions must have the same
decision values.

• So decision values in first and last executions must be the
same, contradiction.

Lower bound proof,
• 0: All inputs 0, no failures.
• …
• ݇: All inputs 1, no failures.
• Start chain from 0.
• Execution 1 removes message 1		2.

• 0 and 1 indistinguishable to all except ݌ଵ and ݌ଶ,
hence to some nonfaulty process.

• Execution 2, removes message 1		3.
• 1 and 2 indistinguishable to all except ݌ଵ	and ݌ଷ,

hence to some nonfaulty process.
• Remove message 1		4.

• Indistinguishable to some nonfaulty process.
• …

0
0

0
0

0
0

0
0

0
0

0
0

Continuing…
• Having removed all of ݌ଵ’s messages,

change ݌ଵ’s input from 0 to 1.
• Indistinguishable to everyone else.

• We can’t just keep removing messages, since
we are allowed ൑ 1 failure in each execution.

• So, we first replace missing messages (one
at a time), until ݌ଵ is no longer faulty.

• Repeat with ݌ଶ, ,ଷ݌ …, eventually reach
execution with all inputs 1, no failures.

• Yields the needed chain.

0
0

0
0

1
0

0
0
1
0

0
0
1
1

1
1

Lower bound proof,
• Theorem 2: There is no ݊-process 2-fault stopping

agreement algorithm in which nonfaulty processes always
decide at the end of round 2.

• Proof: Suppose there is.
• Construct a chain of executions, each with ൑ 2 failures.
• 0: All inputs 0, no failures.
• ݇: All inputs 1, no failures.
• Each consecutive pair indistinguishable

to some nonfaulty process.

• E.g., consider how to change ݌ଵ’s initial value from 0 to 1.

0
0

0
0

Lower bound proof,
• Start with 0, work toward killing ݌ଵ at the start, to change its

initial value, by removing its messages, one by one.
• Then work toward replacing the messages, one by one.
• Start by removing ݌ଵ’s round 2 messages, one by one.

• Can’t continue by removing ݌ଵ’s round 1 messages, since
then consecutive executions would not look the same to
anyone, e.g., removing 1		2	at round 1 allows ݌ଶ to tell
everyone about the failure, at round 2.

0
0

0
0

• Removing 1		2	at round 1 lets ݌ଶ tell everyone about the failure:

• So, use several steps to remove the round 1 message 1		2	
• In these steps, both ݌ଵ	and ݌ଶ are faulty.
• Remove all of ݌ଶ’s round 2 messages, one by one, replace them

one by one.

• Similarly for all of ݌ଵ’s round 1 messages.
• Then change ݌ଵ’s initial value from 0 to 1, as needed.

Lower bound proof,

0
0

0
0

vs.

0
0

0
0

[Fischer, Lynch, Paterson 83 (FLP)]
• Impossibility of consensus, in the presence of failures.
• Theorem: In an asynchronous distributed system in which at

most one process may stop without warning, it is impossible
for the nonfaulty processes to reach agreement reliably.

• Impossibility holds even for very limited failures:
• At most one process ever fails.
• Failed process simply stops.

• Result may seem counter-intuitive:
• If there are many processes, and at most one can fail, then all

but one should be able to agree, and later tell the remaining
one.

• This doesn’t work!

• By contradiction: Assume a 1-fault-tolerant asynchronous
algorithm that solves consensus, argue based on just the
problem requirements that this cannot work.

• Assume ܸ	 ൌ 	 ሼ0,1ሽ.
• Execution: A sequence of steps; in one step, one process

receives one message, updates its state, and sends a
finite number of messages.

• Assume every message eventually gets delivered.
• Execution produces a sequence of (global) configurations.
• Notice that:

• In an execution in which all processes start with 0, the only allowed
decision is 0.

• If all processes start with 1, the only allowed decision is 1.
• For “mixed inputs”, either decision is OK.

[FLP] impossibility proof

• Prove that the algorithm must yield a pattern of four
configurations, ܥ଴, ,ଵܥ ,଴ܦ :where	ଵ,ܦ
• 	௜݌ in one step, in which a particular process	଴ܥ follows from	଴ܦ

receives a particular message ݉.
• receives	௜݌ in one step, in which the same process	ଵܥ follows from	ଵܦ

the same message ݉.
• ଵܥ follows from ܥ଴	in one step, in which a process ݌௝	receives a

message ݉′.
• From ܦ଴, only decision 0	is possible: ܦ଴	is 0-valent.
• From ܦଵ, only decision 1 is possible: ܦଵ is 1-valent.

• Thus, we can “localize” a decision to a
particular pattern of configurations.

• For if not, then we could make the algorithm
execute forever, with all processes continuing
to take steps, and no one ever deciding.

• Contradicts the termination requirement.

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌௜,݉ሻ

ሺ݌௜,݉ሻ

ሺ݌௝,݉′ሻ

[FLP] impossibility proof

• If such a pattern doesn’t exist, we can make the algorithm
execute forever, with all processors continuing to take steps,
and no one ever deciding, a contradiction.

• How?
• Obtain an initial undecided (“bivalent”) configuration.
• Then continue forever, allowing every message ሺ݌௜,݉ሻ	to be

delivered, in turn, while keeping the execution undecided.
• E.g., consider a particular ݌௜,݉ .

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌௜,݉ሻ

ሺ݌௜,݉ሻ

ሺ݌௝,݉′ሻ

[FLP] impossibility proof

• If we can’t ever deliver ݌௜,݉ 	and remain
undecided, then no matter when we deliver
it, a decision is determined.

• But both decisions 0 and 1 are possible, after
some executions.

• Interchange steps until the two decisions are
adjacent, as in the pattern.

• Now get a contradiction by considering two cases:
• Case 1: ݅ ് ݆

• Then consider delivering ሺ݌௝,݉’ሻ	after ܦ଴; still 0-valent.
• So delivering ሺ݌௜,݉ሻ	then ሺ݌௝,݉’ሻ	yields 0-valence, but delivering
ሺ݌௝,݉’ሻ	then ሺ݌௜,݉ሻ	yields 1-valence.

• But the two steps occur at different processes, so their order can’t
matter.

• Contradiction.

[FLP] impossibility proof

• Case 2: ݅ ൌ ݆
• Then consider any deciding execution from ܥ଴	in

which ݌௜ fails, takes no steps, but everyone else does.
• Applying the same execution from ܦ଴ must lead to a

decision of 0.
• Applying the same execution from ܦଵ must lead to a

decision of 1.
• But the other processes can’t distinguish these cases!
• Contradiction.

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌௜,݉ሻ

ሺ݌௜,݉ሻ

ሺ݌௝,݉′ሻ

Significance for distributed systems
• Consensus is an important problem in practice, for example,

for distributed database commit.
• [FLP] result shows limitations on the kind of algorithm one

could hope to find, for agreement problems.
• To get around the impossibility result, one can:

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌,݉ሻ

ሺ݌,݉ሻ

ሺ݌′,݉′ሻ

• Use random choices: [Ben-Or, 83]
• Rely on timing assumptions: [Dolev, Dwork,

Stockmeyer, 87]
• Weaken requirements carefully: [Dwork, Lynch,

Stockmeyer 88]:
• Agreement, validity always hold.
• Termination required if/when system behavior

“stabilizes”: no new failures, and timing within
“normal” bounds.

More Impossibility Results:
Timing-Dependent Systems

• Lundelius, Lynch. An upper and lower bound for clock
synchronization. Information and Control, 1984.

• Attiya, Lynch. Time bounds for real-time process control in the
presence of timing uncertainty. Real-Time Systems
Symposium, 1989.

• Lynch, Shavit. Timing-based mutual exclusion. RTSS, 1992.
• Attiya, Dwork, Lynch, Stockmeyer. Bounds on the time to reach

agreement in the presence of timing uncertainty. JACM, 1993.
• Attiya, Lynch, Shavit. Are wait-free algorithms fast? JACM,

1994.
• Fan, Lynch. Gradient clock synchronization. PODC, 2004;

Distributed Computing, 2006.

More Impossibility Results
• Fekete, Lynch, Mansour, Spinelli. The impossibility of

implementing reliable communication in the face of crashes.
JACM, 1993.

• Afek, Attiya, Fekete, Fischer, Lynch,
Mansour, Wang, Zuck. Reliable
communication over unreliable channels.
JACM, 1994.

• …
• Lynch. A hundred impossibility proofs for

distributed computing. PODC 1989.
• Ellen, Ruppert. Hundreds of impossibility

results for distributed computing.
Distributed Computing 2003.

More Impossibility Results:
The CAP theorem

• Gilbert, Lynch. Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services.
SIGACT NEWS, 2002.

• Gilbert, Lynch. Perspectives on the CAP Theorem.
Computer, 2012.

[Gilbert, Lynch]
• Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant web services
• Published in SIGACT News; derived from an informal

conjecture described by Brewer in a PODC 2000 keynote.
• Brewer described three desirable properties for Web

services:
• Consistency: Data should appear atomic.
• Availability: Every request to perform an operation should eventually

return some result.
• Partition-tolerance: Tolerates lost messages.

• Brewer’s informal claim: In general, can’t achieve all three.
• We formalized the properties; identified several different

versions, some possible, some impossible.

[Gilbert, Lynch]
• Consistent web services: Atomic Read/Write data objects.
• Availability: Read/Write requests should always return.
• Partition-tolerance: Any set of messages may be lost.
• We considered:

• Asynchronous and partially synchronous models.
• Whether/how consistency may be violated when messages are lost.

• Asynchronous case: Unbounded message delay.
• Theorem 1: Impossible to guarantee availability, atomicity in

all executions, while allowing any set of lost messages.
• Proof idea: Partition the network into two parts,
 ଵ, then aܩ ଶ. Suppose a write occurs inܩ and	ଵܩ
read in ܩଶ. Read can’t know about the write. ଵܩ ଶܩ

ଵܩ

ଶܩ

Asynchronous case
• Theorem 1: Impossible to guarantee availability, atomicity in

all executions, while allowing any set of lost messages.
• Q: What if we drop the atomicity requirement when

partitions occur?
• Theorem 2: Impossible to guarantee availability in all

executions, atomicity in executions in which no messages
are lost, while allowing any set of lost messages in general.

• Proof idea: Processors don’t know whether messages have
been lost, or may arrive later.

• A violation of atomicity occurs at a finite
point in time; then extend the execution to
deliver all messages.

ଵܩ

ଶܩ

Partially synchronous case
• Local timers; not synchronized, increase at the same rate.
• Can schedule actions to occur at particular local times.
• Messages that aren’t lost are delivered within a known time delay.
• Theorem 3: (like Theorem 1) Impossible to guarantee availability,

atomicity in all executions, while allowing any set of lost
messages.

• Proof: Similar to Theorem 1.
• But now we get:
• Theorem 4: Possible to guarantee availability in all executions,

atomicity in executions in which no messages are lost, while
allowing any set of lost messages in general.

• Proof idea: Now can detect lost messages.

ଵܩ

•ଶܩ Strengthen Theorem 4 to give interesting,
weaker consistency guarantees even when
messages are lost.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

3. Formal Modeling and Verification
• Lynch, Fischer. On describing the behavior and

implementation of distributed systems. Theoretical
Computer Science, 1981.

• Lynch, Tuttle. An introduction to Input/Output automata.
CWI-Quarterly, 1989.

• Lynch,Tuttle. Hierarchical correctness proofs for
distributed algorithms. PODC, 1987.

• Lynch, Multivalued possibilities mappings. REX Workshop,
1990

• Lynch, Vaandrager. Forward and backward simulations.
Information and Computation 1995.

ሻ1ݒሺݐ݅݊݅

݀݁ܿ݅݀݁ሺݒሻ1

I/O Automata

3݌

Consensus

1݌
2݌

ሻ2ݒሺݐ݅݊݅

݀݁ܿ݅݀݁ሺݒሻ2

Timed I/O Automata
• Lynch, Vaandrager. Forward and backward simulations II:

Timing-based systems. Information and Computation 1996.

• Lynch, Segala, Vaandrager. Hybrid
I/O automata. Information and
Computation, 2003.

• Kaynar, Lynch, Segala, Vaandrager.
The theory of timed I/O automata.
Synthesis Lectures on Distributed
Computing Theory 2006, 2010.

Probabilistic and Dynamic I/O Automata
• Lynch, Segala, Vaandrager. Compositionality for

probabilistic automata. CONCUR, 2003.
• Lynch, Segala, Vaandrager. Observing branching

structure through probabilistic contexts. SIAM J.
Computing, 2007

• Attie, Lynch. Dynamic input/output automata: a formal
model for dynamic systems. CONCUR 2001. Information
and Computation, 2016.

Case Studies
• Heitmeyer, Lynch. The Generalized Railroad Crossing: a case study

in formal verification of real-time systems. RTSS, 1994.
• Lygeros, Lynch. Strings of vehicles: Modeling and safety conditions.

Hybrid Systems: Computation and Control, 1998.
• Dolginova, Lynch. Safety verification for automated platoon

maneuvers. Intl. Workshop on Hybrid and Real-Time Systems, 1997.
• Livadas, Lygeros, Lynch. High-level modeling and analysis of the

Traffic alert and Collision Avoidance System (TCAS). RTSS, 1999.
• Mitra, Wang, Lynch, Feron. Safety verification of model helicopter

controller using Hybrid Input/Output automata. HSCC, 2003.
• Fan, Droms, Griffeth, Lynch. The DHCP failover protocol: A formal

perspective. International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE), 2007.

Modeling Tools
• Lynch, Michel, Shvartsman. Tempo: A toolkit for the

Timed Input/Output Automata formalism. Intl. Conf on
Simulation Tools and Techniques for Communications,
Networks, and Systems, 2008.

• Lynch, Garland, Kaynar, Michel, Shvartsman. The Tempo
language user guide and reference manual. MIT, 2008.

• Georgiou, Lynch, Mavrommatis,
Tauber. Automated implementation
of complex distributed algorithms
specified in the IOA language.
ISCA, 2005. Software tools for
technology transfer, 2009.

This talk:

1. Algorithms for Traditional Distributed
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems

4. Algorithms for New Distributed Systems
• So far, I have described work on algorithms from traditional

distributed systems.
• But for the past decade, we have been working on new

types of distributed systems: those in which
noise, uncertainty, and change predominate:
• Wireless networks
• Biological systems

• Same kinds of research:
• Abstract models for problems and algorithms.
• New algorithms.
• Proofs of correctness, performance,…
• Impossibility results and lower bounds.
• General foundations.

Wireless Networks
• Ad hoc, no central base station, usually mobile.
• Soldiers, first responders, explorers,…
• Challenge: Find good communication layers to simplify the

task of designing applications for ad hoc wireless networks.
• Idea 1: Virtual Node Layers
• Idea 2: Abstract MAC (Reliable Local Broadcast) Layers

Idea 1: Virtual Node Layers
• Dolev, Gilbert, Lynch, Shvartsman, Welch. GeoQuorums: Implementing

atomic memory in mobile ad hoc networks. DISC 2003.
• Dolev, Gilbert, Lynch, Schiller, Shvartsman, Welch. Virtual Mobile Nodes for

mobile ad hoc networks. DISC, 2004.
• Dolev, Gilbert, Lahiani, Lynch, Nolte. Timed Virtual Stationary Automata for

mobile networks. OPODIS, 2005.
• Dolev, Lahiani, Lynch, Nolte. Self-stabilizing mobile node location

management and message routing. Symp. on Self-Stabilizing Systems
(SSS), 2005.

• Lynch, Mitra, Nolte. Motion coordination using Virtual Nodes. CDC, 2005.
• Brown, Gilbert, Lynch, Newport, Nolte, Spindel. The Virtual Node layer: A

programming abstraction for wireless sensor networks. SIGBED Review,
2007.

• Gilbert, Lynch, Mitra, Nolte. Self-stabilizing robot formations over unreliable
networks. ACM Transactions on Autonomous and Adaptive Systems, 2009.

Virtual Node Layers
• Simplify programming for an ad hoc mobile network by

adding Virtual Nodes (VNs) at known locations.
• Write algorithms and applications using Virtual Nodes.
• Mobile nodes emulate Virtual Nodes:

• Each VN is emulated by nodes in its vicinity.
• Use a full replication or leader-based strategy.

• Applications:
• Implement atomic memory in a

mobile network
• Geographical message routing
• Regional motion coordination:

robot swarms, Virtual Traffic Lights,
Virtual Air-Traffic Controllers,…

Virtual Traffic Light (VTL)
• For an intersection without a real traffic

light.
• Computers in cars emulate a VN, which is

programmed to act like a traffic light.
• Any policy desired, e.g., 30 sec in each

direction.
• Cars see red or green, on local displays.
• VTL dies when no cars are around, but

that’s OK.

Virtual Air-Traffic Controllers
• Aircraft in regions of airspace without
ground-based controllers, e.g., the
ocean.

• To control access to regions, use
VATCs, emulated by computers on
the aircraft.

• VATC behaves like a human ATC:
• Keeps track of aircraft in local region.
• Tells neighbor ATCs when to hand off

aircraft.
• Tells aircraft how to move within local

region.

Dealing With Unreliable Communication

• Our Virtual Node work assumed a wireless
communication model based on reliable local
broadcast.

• But real wireless communication is not so
reliable---it’s subject to collisions, with resulting
message losses.

Message Collision Model
• In each round, some nodes transmit, the others
listen.

• Transmitter hears only its own message.
• Listener hears:

• Silence (٣), if none of its graph neighbors transmits.
• A message, if exactly one of its neighbors transmits.
• Collision ሺ١ሻ, if two or more neighbors transmit.

Idea 2: Abstract MAC Layers
• Mask collisions within an abstract MAC layer.
• AKA a Reliable Local Broadcast (RLB) layer.
• Implement RLB using low-level collision-
management algorithms.

High-level Algorithm

RLB Layer
Implementation

Physical Network

RLB

• Build higher-level
algorithms over RLB.

Abstract MAC layers

• Kuhn, Lynch, Newport. The abstract MAC layer. DISC,
2009. Dist. Comp. 2011.

• Khabbazian, Kowalski, Kuhn, Lynch. Decomposing
broadcast algorithms using abstract MAC layers.
Ad Hoc Networks, 2014.

• Halldórsson, Holzer, Lynch. A local broadcast layer for the
SINR network model. PODC 2015.

Remarks

• So, we can mask message collisions inside a
Reliable Local Broadcast layer.

• Use RLB as an abstraction layer for developing
higher-level algorithms.

• But: This work considers message collisions, but
not communication uncertainty, i.e., uncertainty in
where the messages reach.

Communication Uncertainty
• Use two graphs, and ᇱ

• Messages must :ܩ reach.
• : Messages mayܩ reach.

• [Clementi, Monti, Silvestri 04] [Kuhn, Lynch, Newport 09]

	ܩ ൌ 	 ሺܸ, ሻܧ 	ܩ ൌ 	 ሺܸ, ,ܧ ሻܧ
ܧ		ܧ

Results for the Dual Graph Model
• Kuhn, Lynch, Newport. Hardness of broadcasting in wireless

networks with unreliable communication. PODC, 2009.
• Kuhn, Lynch, Newport, Oshman, Richa. Broadcasting in

unreliable radio networks. PODC 2010
• Ghaffari, Haeupler, Lynch, Newport. Bounds on contention

management in radio networks. DISC, 2012
• Ghaffari, Lynch, Newport. The cost of radio network broadcast for

different models of unreliable links. PODC, 2013.
• Censor-Hillel, Gilbert, Kuhn, Lynch, Newport. Structuring

unreliable radio networks. DISC, 2014.
• Ghaffari, Kantor, Lynch, Newport. Multi-message broadcast with

abstract MAC layers and unreliable links. PODC, 2014.
• Lynch, Newport. A (truly) local broadcast layer for unreliable radio

networks. PODC, 2015.
• Gilbert, Lynch, Newport, Pajak. On Simple Back-Off in Unreliable

Radio Networks. OPODIS, 2018, Best Paper award.

Biological Systems
• Biological distributed algorithms:

• Insect colonies
• Developing organisms
• Brains

• Simple system models.
• Simple, flexible, robust, adaptive algorithms.
• Two complementary goals:

• Help to understand biological systems.
• Suggest new ideas

for wireless network
algorithms.

Biological Systems
• Insect colony problems/algorithms:

• Task allocation in ant colonies
• Exploring for food (searching)
• Agreeing on a new nest (consensus)
• Colony density estimation

• Developing organisms:
• Scale-independent pattern formation (French Flag)

• Brains:
• Winner-take-all (leader election)
• Similarity detection
• Neural coding
• Temporal-spatial translation
• Learning

Conclusions
• My collaborators and I have worked on theory of distributed

systems, to help understand their capabilities and limitations.
• This work has included:

• Abstract models for systems problems and algorithms.
• Rigorous proofs of correctness, performance,…, discovery of errors.
• Impossibility results and lower bounds, expressing inherent limitations.
• New algorithms.
• General foundations for modeling, analyzing distributed systems.

• Many kinds of systems:
• Distributed data-management systems
• Wired, wireless communication systems
• Biological systems: Insect colonies, developmental biology, brains.

• But there is still much more to be done!

Thanks to my many, many
collaborators!

Thank you!

