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Theory for Distributed Systems
• We have worked on theory for distributed systems, trying to 

understand (mathematically) their capabilities and limitations.
• This work has included:

• Defining abstract, mathematical models for problems solved by 
systems, and for the algorithms used to solve them.

• Producing proofs of correctness, performance, fault-tolerance.
• Proving impossibility results and lower bounds, expressing inherent 

limitations of distributed systems for solving problems.
• Developing new algorithms.
• Developing foundations for modeling, analyzing distributed systems.

• Kinds of systems:
• Distributed data-management systems.
• Wired, wireless communication systems.
• Biological systems:  Insect colonies, developmental biology, brains.



This talk:

1. Algorithms for Traditional Distributed 
Systems

2. Impossibility Results
3. Foundations
4. Algorithms for New Distributed Systems



1. Algorithms for Traditional Distributed 
Systems

• Mutual exclusion in shared-memory systems, resource 
allocation:  Fischer, Burns,…late 70s and early 80s.

• Dolev, Lynch, Pinter, Stark, Weihl.  Reaching approximate 
agreement in the presence of faults. JACM,1986.

• Lundelius, Lynch. A new fault-tolerant algorithm for clock 
synchronization. Information and Computation,1988.

• Dwork, Lynch, Stockmeyer. Consensus in the presence of 
partial synchrony. JACM,1988.  Dijkstra Prize, 2007.



Dwork, Lynch, Stockmeyer [DLS]
“This paper introduces a number of practically motivated 
partial synchrony models that lie between the completely 
synchronous and the completely asynchronous models and in 
which consensus is solvable. 
It gave practitioners the right tool for building fault-tolerant 
systems and contributed to the understanding that safety can 
be maintained at all times, despite the impossibility of 
consensus, and progress is facilitated during periods of 
stability. 
These are the pillars on which every fault-tolerant system has 
been built for two decades. This includes academic projects, 
as well as real-life data centers, such as the Google file 
system.”



Distributed consensus
• Processors in a distributed network want to agree on a 

value in some set ܸ.
• Each processor starts with an initial value in ܸ, and they 

want to agree on a value in ܸ.
• But some of the processors might be faulty (stopping, or 

Byzantine).
• Agreement: All nonfaulty processors agree.
• Validity: If all processors have the same initial value ݒ, then 
ݒ is the only allowed decision for a nonfaulty processor.

• Problem arose as:
• The Database Commit problem [Gray 78].  
• The Byzantine Agreement problem (for altitude sensor readings)  

[Pease, Shostak, Lamport 80].



[DLS] contributions 
• Considers a variety of partial synchrony models, with 

different processor rate and message-delay assumptions.
• Considers a variety of failure models:  stopping failures, 

Byzantine failures, Byzantine failure with authentication, 
sending and receiving omission failures,…

• Gives algorithms to reach agreement in all cases, 
guaranteeing agreement and validity always, and 
termination when the system’s behavior stabilizes.

• Key algorithmic ideas:  
• Different processors try to take charge of reaching agreement.
• Rotating coordinator.
• Must reconcile to avoid contradictory decisions.



[DLS] contributions
• E.g., consider stopping failures, synchronous rounds.
• Messages may be lost, but after some Global Stabilization Time, all 

messages between nonfaulty processors are delivered.
• 4-round phases, coordinator ݌௜, ݅	 ൌ 	݇	mod	݊, at phase ݇.
• A processor may lock a value ݒ with phase number ݇, meaning that 

it thinks that the coordinator might decide ݒ at phase ݇.
• Phase ݇, coordinator ݌௜ , ݅	 ൌ 	݇	mod	݊

• Round 1: Each processor ݌௝	sends “acceptable” decision values (known to 
be someone’s initial value, ݌௝	 doesn’t hold a lock on a different value) to ݌௜;
ݒ tries to find a value	௜݌ to propose, acceptable to a majority of processors.

• Round 2:  ݌௜ broadcasts proposed value ݒ, recipients lock ሺݒ, ݇ሻ.
• Round 3: Those who locked ሺݒ, ݇ሻ	send acks to ݌௜; if ݌௜ receives a majority 

of acks, decides ݒ.
• Round 4: Cleanup, exchange lock info, release older locks.



[DLS] contributions
• Phase ݇, coordinator ݌௜ , ݅	 ൌ 	݇	mod	݊

• Round 1:  Send acceptable decision values to	݌௜;	݌௜	tries to pick a 
value ݒ to propose, one that is acceptable to a majority of 
processors.

• Round 2:  ݌௜ broadcasts proposed value ݒ, recipients lock ሺݒ, ݇ሻ.
• Round 3:  Those who locked ሺݒ, ݇ሻ	send acks to ݌௜; if ݌௜ receives 

majority of acks, decides ݒ.
• Round 4: Cleanup, exchange lock info, release older locks.

• Some ideas inspired by [Skeen 3-phase commit]. 
• [Paxos] consensus protocol uses similar ideas.

݅	



Other Work on Algorithms for 
Traditional Distributed Systems 
• Concurrency control for nested transactions
• Distributed shared memory
• Group communication
• RAMBO, dynamic atomic memory



Concurrency Control Algorithms for 
Nested Transactions

• Lynch, Merritt, Weihl, Fekete.  Atomic Transactions in 
Concurrent/Distributed Systems.  Morgan Kaufmann, 1993.

• Background:  
• Transactions, concurrency control: [Gray], [Bernstein, Goodman].
• Extensions to nested transactions:  [Liskov]
• Systems papers, implementations, little theory.

• Our contributions:
• Modeled nested transactions rigorously.
• Described existing algorithms precisely, 

generalized them.
• Proved correctness.

• Many papers, book.
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• General theory for nested transactions, including a general 
Atomicity Theorem that provides a compositional method 
for proving correctness of concurrency control algorithms

• Lock-based algorithms.
• Timestamp-based algorithms.
• Hybrid locking/timestamp algorithms.
• Optimistic concurrency control 
algorithms.

• Orphan management algorithms.
• Replicated data mgmt. algorithms.
• All rigorously, in terms of the I/O 
automata modeling framework.

Concurrency Control Algorithms for 
Nested Transactions



Distributed Shared Memory

• Fekete, Kaashoek, Lynch.  Implementing 
sequentially consistent shared objects using 
broadcast and point-to-point communication.  
ICDCS, 1995.  JACM, 1998.



[Fekete, Kaashoek, Lynch, 1988]
• Considered an algorithm to implement sequentially consistent 

read/update shared memory, using basic broadcast and 
point-to-point communication services as in Amoeba.

• Based on Orca language/system [Bal, Kaashoek, Tanenbaum 
93], for writing applocations for clusters of workstations.

• Orca defines an abstract Multicast 
Channel, with strong ordering and 
causality properties. 

• Implements the Multicast Channel over 
basic broadcast and point-to-point 
communication services, using a 
sequence-number-based protocol.

• Implements sequentially consistent 
memory over any Multicast Channel, 
using a partial replication strategy      
(read any copy, update all copies).

Seq. Cons. 
Memory Impl.

Multicast 
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel



[FKL] contributions
• We specified the message delivery and ordering 

requirements of the Multicast Channel formally.
• Defined a sequence-number-based algorithm to implement 

the Mcast Channel over the basic communication services.
• Tried to prove the algorithm correct.
• But, we discovered an algorithmic 

error in the Orca implementation:  
• Didn’t piggyback needed sequence 

numbers on certain response 
messages.

• Error was fixed in the system.
• Completed the proof.

Seq. Cons. 
Memory Impl.

Multicast 
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel



[FKL] contributions, cont’d
• Defined a sequence-number-based algorithm to implement the 

Multicast Channel over the basic communication services, 
proved it correct.

• We defined a partial-replication 
algorithm to implement sequentially 
consistent memory over the Mcast
Channel, generalizing the Orca 
algorithm.

• Developed a new proof technique 
for proving sequential consistency.

• Using I/O automata, composition, 
abstraction.

Seq. Cons. 
Memory Impl.

Multicast 
Channel Impl.

Bcast Pt-Pt

Client Client Client

Mcast Channel



Group Communication Services

• Hickey, Lynch, van Renesse.  Specifications and 
proofs for Ensemble layers.  TACAS, 1999.

• Fekete, Lynch, Shvartsman.  Specifying and using 
a partitionable group communication service.  
PODC, 1997, TOCS, 2001.



[Hickey, Lynch, van Renesse, 1999]
• We studied the Ensemble Group Communication (GC) 

system of Hayden, van Renesse, Birman, et al.
• Ensemble supports distributed programming by providing 

guarantees for synchronization,                               
message ordering, message delivery.

Layer 3

Layer 2

Client Client Client

Layer 1

• Tolerates failures and recoveries.
• Organizes processors into views, with 

consistency guarantees for message 
deliveries within views.

• Different combinations of guarantees 
encapsulated into (~50) different 
layers.



[HLvR] contributions
• We studied two key Ensemble layers, and the relationship 

between them, formally, using I/O automata:
• Ensemble Virtual Synchrony (EVS),
• Ensemble Total Order (ETO),
• EVStoETO, distributed algorithm that uses VS to implement TO.

• Ensemble Virtual Synchrony:
• Basic GC semantics, processors join and 

leave views.
• Messages sent in a view are delivered in the 

same view, FIFO for each (sender, receiver) 
pair, same messages to all receivers.

• Ensemble Total Order:
• Adds consistent global total order and 

causal order guarantees. Virtual 
Synchrony 

Client Client Client

EVS-
to-

ETO

EVS-
to-

ETO

EVS-
to-

ETO

Total Order



[HLvR] contributions, cont’d
• EVS:

• GC, views.
• Messages sent and delivered in same view, FIFO for each (sender, 

receiver) pair, same messages to all receivers.
• ETO:

• Adds total order, causal order guarantees.
• EVStoETO:

• 2-phase token-based algorithm.
• Proved that the composition VS + 

EVStoETO implements ETO.
• Implementation is a simulation 

relation. Virtual 
Synchrony 

Client Client Client

EVS-
to-

ETO
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to-
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to-

ETO

Total Order



[HLvR] contributions, cont’d
• Discovered an algorithmic error in the Ensemble 

implementation: 
• Some message deliveries in the implementation were not allowed by 

the ETO specification

• Problem showed up in one step of the 
simulation proof.

• Error was fixed in the system.
• Completed the proof.
• Using I/O automata, composition, 

abstraction.

Virtual 
Synchrony 
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[Fekete, Lynch, Shvartsman, 1997, 2001]
• Similar, for partitionable group communication services as in 

Transis, Totem, Horus systems.
• Virtual Synchrony services, allowing concurrent views that 

can partition processors, repair partitions.

Partitionable
Virtual Synchrony 

Client Client Client

VS-
to-TO

VS-
to-TO

VS-
to-TO

Total Order

• Guarantees for message ordering, 
causality, delivery guarantees, 
accommodating partitions and repairs.

• Previous specifications, complicated, 
ambiguous, inconsistent…

• We gave a new specification, showed 
how to use it to implement (non-view-
oriented TO broadcast), and 
sequentially consistent memory. 



Summary:  System modeling 
and proofs
• Using automata-based formal methods, 

we modeled, verified many distributed 
data-management systems, especially 
those with strong consistency 
requirements.

• Specified required properties formally.
• Defined abstract versions of systems 

algorithms.
• Clarified ambiguities.
• Proved the algorithms correct.
• Found and fixed algorithmic errors in 

implemented systems. VS

VS-
to-
TO

VS-
to-
TO

VS-
to-
TO

TO



Reconfigurable Atomic Memory
• Lynch, Shvartsman.  RAMBO:  A reconfigurable atomic 

memory service for dynamic networks.  DISC, 2002.
• Gilbert, Lynch, Shvartsman.  RAMBO II:  Rapidly 

Reconfigurable Atomic Memory for Dynamic Networks.  
DSN, 2003.

• Gilbert, Lynch, Shvartsman. RAMBO:  A Robust, 
Reconfigurable Atomic Memory Service for Dynamic 
Networks.  Distributed Computing, 2010.



Goal
• Implement atomic Read/Write shared memory in a dynamic 

network setting.
• Atomic (linearizable) memory “looks like” centralized shared memory.
• Participants may join, leave, fail during computation.
• Mobile networks, peer-to-peer networks.

• High availability, low latency.
• Atomicity in spite of asynchrony and change.
• Good performance under limits on asynchrony and change.
• Applications:

• Teams of soldiers in a ground-based                                                
military operation.

• Teams of first responders in a disaster.



Atomic Memory in Static Networks
[Attiya, Bar-Noy, Dolev 95]

• Read-quorums, write-quorums of processors; every read-
quorum intersects every write-quorum.

• Replicate objects everywhere, with version tags.
• To Read:  Contact a read-quorum, determine the latest 

version, propagate it to a write-quorum, return it.
• To Write:  Contact a read-quorum, determine the latest tag, 

choose a larger tag, write (tag,value) to a write-quorum.

• Operations proceed concurrently, interleaving at fine 
granularity; still guarantees atomicity.



RAMBO algorithm

• Reconfigurable Atomic Memory for Basic Objects            
(= reconfigurable atomic Read/Write shared memory).

• Uses configurations, each with:
• members, a set of processors,
• read-quorums, write-quorums

• Objects replicated at all members of ܥ.
• Reads and Writes access quorums of ܥ, as in ABD; 

handles small, transient changes.
• To handle larger, more permanent changes, reconfigure to 

a new configuration ܥ’, moving object copies to members 
of ܥ’.	

RAMBO



• Main algorithm + Reconfiguration 
service

• Reconfiguration service:  
• Supplies a consistent sequence of configurations.
• Triggered by external reconfiguration requests.

• Main algorithm:  
• Handles reading and writing of objects.
• Removes old configurations, in the background.
• Reads/Writes use all currently-active configurations.

• All activities proceed concurrently, interleaving at fine 
granularity; still guarantees atomicity.

ReconNet

RAMBO

Recon

RAMBO Algorithm structure



Reads and Writes
• Two-phase protocol:
• Phase 1: Collect object info (values and tags) from read-

quorums of all known active configurations.
• Phase 2:  Propagate latest object info to write-quorums of all 

known active configurations.

• Many Read/Write operations may execute concurrently.
• Quorum intersection properties guarantee atomicity.
• Each phase terminates by a fixed-point condition, involving a 

quorum from each known active configuration.



Removing old configurations
• “Garbage-collect” them in the background.
• Another two-phase protocol:
• Phase 1:  For each old configuration ܥ:

• Inform a write-quorum of ܥ about the new configuration.  
• Collect object information from a read-quorum of ܥ.

• Phase 2: 
• Propagate latest object information to a write-quorum of 

the new configuration.

• GC proceeds concurrently with Reads and Writes, 
interleaving at fine granularity; still guarantees atomicity.



• Uses consensus to determine successive configurations.
• Members of old configuration can propose new configuration.
• Proposals reconciled using consensus.
• Consensus is a heavyweight mechanism, but:

• Used only for reconfigurations, should be infrequent.
• Does not delay Read/Write operations.

Consensus

Recon

Net

Implementation of Recon



Implementing consensus

• All using Timed I/O Automata.

• Partial-order method for proving atomicity.
• Method has been used for other algorithms, e.g. [Nicolaou, 

Cadambe, Prakash, Konwar,…, ICDCS 2019].

decide(v) init(v)
init(v)

Consensus

• Can use DLS, or Paxos.
• Agreement, validity always 

guaranteed.
• Termination guaranteed when 

underlying system stabilizes.



Compare with Paxos [Lamport 98]:
• In Paxos, consensus used for each successive operation, 

including Reads, Writes, and Recons.
• Completion of every operation depends on termination of 

consensus.
• In RAMBO, consensus used for Recons only.

• However, RAMBO supports only Reads and Writes, whereas 
Paxos can support more powerful read-modify-write 
operations.



This talk:

1. Algorithms for Traditional Distributed 
Systems

2. Impossibility Results
3. Foundations 
4. Algorithms for New Distributed Systems



2. Impossibility Results
• Distributed algorithms have strong inherent limitations, 

because they must work in difficult settings:
• Local knowledge only.
• Uncertainties, about remote inputs, timing, failures.

• Theoretical models enable actual proofs of such limitations.
• [Cremers, Hibbard 76]:

• Shared-memory, Boolean shared variables, arbitrary operations.
• Fair Mutual Exclusion:  Every process(or) that requests the resource 

eventually gets it.
• Unsolvable for two processes with one Boolean                         

shared variable.  
1݌ 2݌

ݔ



Impossibility Results:  Mutual Exclusion
• Burns, Jackson, Lynch, Fischer, Peterson.  Data 

requirements for implementation of ݊-process mutual 
exclusion using a single shared variable. JACM, 1982.

• Burns, Lynch.   Bounds on shared memory for mutual 
exclusion.  Information and Computation, 1993 (actually 
proved in ~1980).

1݌ 2݌

1ݔ

݊݌

2ݔ



[Burns, Lynch 93]
• Theorem: Mutual exclusion for ݊ processes, using 

read/write shared memory, requires 	݊ shared variables.
• Even if:

• Fairness is not required, just progress.
• Everyone can read and write all variables.
• Variables are of unbounded size.

• Example:  ݊	 ൌ 	2
• Suppose 1݌ and 2݌	solve mutual exclusion with progress, using one 

read/write shared variable ݔ.
• Suppose 1݌ arrives, wants the resource.  By the progress 

requirement, it must be able to get it.  
• Along the way, 1݌ must write to ݔ: If not, 2݌ wouldn’t know 1݌ was 

there, so it could get the resource too, contradicting mutual exclusion. 

1݌ 2݌

ݔ



Contradicts mutual exclusion!

1݌ arrives 1݌ gets the 
resource

1݌ writes ݔ

2݌ gets the 
resource

2݌ writes ݔ

1݌ writes ݔ, 
overwriting 2݌

1݌ gets the 
resource

[Burns, Lynch] lower bound, 



• Mutual exclusion with ݊ processes, using read/write 
shared memory, requires n shared variables:

• Argument is more intricate, same key ideas:
• Writing to a shared variable overwrites previous contents.
• Process sees only its own state and the values it reads 

from shared variables.

With processes…

1݌ 2݌

1ݔ

݊݌

2ݔ



Impossibility Results:  Consensus
• Fischer, Lynch.  A lower bound for the time to assure 

interactive consistency. IPL, 1982.
• Chaudhuri, Herlihy, Lynch, Tuttle. Tight bounds for ݇-set 

agreement.  JACM, 2000.
• Fischer, Lynch, Paterson: Impossibility of distributed 

consensus with one faulty process.  PODS, 1983; JACM, 
1985.

• Fischer, Lynch, Merritt.  Easy impossibility proofs for 
distributed consensus problems.  Dist. Comp., 1986.



Distributed consensus
• Processes in a distributed network want to agree on a value 

in some set ܸ.
• Each process starts with an initial value in ܸ, and they want 

to agree on a value in ܸ.
• Some processes might be faulty (stopping, or Byzantine).
• Agreement: All nonfaulty processes agree.
• Validity: If all processes have the same initial value ݒ, then 
ݒ is the only allowed decision for a nonfaulty process.



[Fischer, Lynch 82]
• Consensus in synchronous systems.
• All known algorithms had used rounds to reach 
consensus in the presence of up to faulty processes.

• We showed that this is inherent:  rounds are 
needed in the worst case, even for stopping failures.

• Proof idea:  Assume an -round agreement 
algorithm tolerating faults, get a contradiction.

• Assume:
• ݊-node complete graph:
• Binary decisions, ܸ	 ൌ 	 ሼ0,1ሽ
• Decisions right after round ݂.
• All-to-all communication at every round.



Special case:  
• Theorem 1:  There is no ݊-process 1-fault stopping agreement 

algorithm in which nonfaulty processes always decide at the 
end of round 1.

• Proof:
• By contradiction.  Suppose there is such an algorithm.
• Construct a chain of executions, each with ൑ 1 failure, so that:

• First execution must have (unique) decision value 0.
• Last must have decision value 1.
• Any two consecutive executions are indistinguishable to some 

process ݅ that is nonfaulty in both.  So ݅	must decide the same in 
both executions, and the two executions must have the same 
decision values.

• So decision values in first and last executions must be the 
same, contradiction.



Lower bound proof, 
• 0: All inputs 0, no failures.
• …
• ݇:  All inputs 1, no failures.
• Start chain from 0.
• Execution 1 removes message 1		2.

• 0 and 1 indistinguishable to all except ݌ଵ and ݌ଶ, 
hence to some nonfaulty process.

• Execution 2, removes message 1		3.
• 1 and 2 indistinguishable to all except ݌ଵ	and ݌ଷ,

hence to some nonfaulty process.
• Remove message 1		4.

• Indistinguishable to some nonfaulty process.
• …

0
0

0
0

0
0

0
0

0
0

0
0



Continuing…
• Having removed all of ݌ଵ’s messages, 

change ݌ଵ’s input from 0 to 1.
• Indistinguishable to everyone else.

• We can’t just keep removing messages, since 
we are allowed ൑ 1 failure in each execution.

• So, we first replace missing messages (one 
at a time), until ݌ଵ is no longer faulty.

• Repeat with ݌ଶ, ,ଷ݌ …, eventually reach 
execution with all inputs 1, no failures.

• Yields the needed chain.

0
0

0
0

1
0

0
0
1
0

0
0
1
1

1
1



Lower bound proof,
• Theorem 2:  There is no ݊-process 2-fault stopping 

agreement algorithm in which nonfaulty processes always 
decide at the end of round 2.

• Proof:  Suppose there is.
• Construct a chain of executions, each with ൑ 2 failures.
• 0: All inputs 0, no failures.
• ݇: All inputs 1, no failures.
• Each consecutive pair indistinguishable                               

to some nonfaulty process.

• E.g., consider how to change ݌ଵ’s initial value from 0 to 1.

0
0

0
0



Lower bound proof,
• Start with 0, work toward killing ݌ଵ at the start, to change its 

initial value, by removing its messages, one by one.
• Then work toward replacing the messages, one by one.
• Start by removing ݌ଵ’s round 2 messages, one by one.

• Can’t continue by removing ݌ଵ’s round 1 messages, since 
then consecutive executions would not look the same to 
anyone, e.g., removing 1		2	at round 1 allows ݌ଶ to tell 
everyone about the failure, at round 2.

0
0

0
0



• Removing 1		2	at round 1 lets ݌ଶ tell everyone about the failure:

• So, use several steps to remove the round 1 message 1		2	
• In these steps, both ݌ଵ	and ݌ଶ are faulty.
• Remove all of ݌ଶ’s round 2 messages, one by one, replace them 

one by one.

• Similarly for all of ݌ଵ’s round 1 messages.
• Then change ݌ଵ’s initial value from 0 to 1, as needed.

Lower bound proof,  

0
0

0
0

vs.

0
0

0
0



[Fischer, Lynch, Paterson 83 (FLP)]
• Impossibility of consensus, in the presence of failures.
• Theorem: In an asynchronous distributed system in which at 

most one process may stop without warning, it is impossible 
for the nonfaulty processes to reach agreement reliably.

• Impossibility holds even for very limited failures:  
• At most one process ever fails.
• Failed process simply stops.

• Result may seem counter-intuitive:
• If there are many processes, and at most one can fail, then all 

but one should be able to agree, and later tell the remaining 
one.

• This doesn’t work!



• By contradiction:  Assume a 1-fault-tolerant asynchronous 
algorithm that solves consensus, argue based on just the 
problem requirements that this cannot work.

• Assume ܸ	 ൌ 	 ሼ0,1ሽ.
• Execution: A sequence of steps; in one step, one process 

receives one message, updates its state, and sends a 
finite number of messages.

• Assume every message eventually gets delivered.
• Execution produces a sequence of (global) configurations.
• Notice that:

• In an execution in which all processes start with 0, the only allowed 
decision is 0.

• If all processes start with 1, the only allowed decision is 1.
• For “mixed inputs”, either decision is OK.

[FLP] impossibility proof



• Prove that the algorithm must yield a pattern of four 
configurations, ܥ଴, ,ଵܥ ,଴ܦ :where	ଵ,ܦ
• 	௜݌ in one step, in which a particular process	଴ܥ follows from	଴ܦ

receives a particular message ݉.
•  receives	௜݌ in one step, in which the same process	ଵܥ follows from	ଵܦ

the same message ݉.
• ଵܥ follows from ܥ଴	in one step, in which a process ݌௝	receives a 

message ݉′.
• From ܦ଴, only decision 0	is possible:  ܦ଴	is 0-valent.
• From ܦଵ, only decision 1 is possible:  ܦଵ is 1-valent. 

• Thus, we can “localize” a decision to a 
particular pattern of configurations. 

• For if not, then we could make the algorithm 
execute forever, with all processes continuing 
to take steps, and no one ever deciding.

• Contradicts the termination requirement.

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌௜,݉ሻ

ሺ݌௜,݉ሻ

ሺ݌௝,݉′ሻ

[FLP] impossibility proof



• If such a pattern doesn’t exist, we can make the algorithm 
execute forever, with all processors continuing to take steps, 
and no one ever deciding, a contradiction.

• How?  
• Obtain an initial undecided (“bivalent”) configuration.
• Then continue forever, allowing every message ሺ݌௜,݉ሻ	to be 

delivered, in turn, while keeping the execution undecided.
• E.g., consider a particular ݌௜,݉ .

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌௜,݉ሻ

ሺ݌௜,݉ሻ

ሺ݌௝,݉′ሻ

[FLP] impossibility proof

• If we can’t ever deliver ݌௜,݉ 	and remain 
undecided, then no matter when we deliver 
it, a decision is determined.

• But both decisions 0 and 1 are possible, after 
some executions.  

• Interchange steps until the two decisions are 
adjacent, as in the pattern.



• Now get a contradiction by considering two cases:
• Case 1:  ݅ ് ݆

• Then consider delivering ሺ݌௝,݉’ሻ	after ܦ଴; still 0-valent.
• So delivering ሺ݌௜,݉ሻ	then ሺ݌௝,݉’ሻ	yields 0-valence, but delivering 
ሺ݌௝,݉’ሻ	then ሺ݌௜,݉ሻ	yields 1-valence.

• But the two steps occur at different processes, so their order can’t 
matter.

• Contradiction.

[FLP] impossibility proof

• Case 2:  ݅ ൌ ݆
• Then consider any deciding execution from ܥ଴	in   

which ݌௜ fails, takes no steps, but everyone else does.
• Applying the same execution from ܦ଴ must lead to a 

decision of 0.
• Applying the same execution from ܦଵ must lead to a 

decision of 1.
• But the other processes can’t distinguish these cases!
• Contradiction.

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌௜,݉ሻ

ሺ݌௜,݉ሻ

ሺ݌௝,݉′ሻ



Significance for distributed systems  
• Consensus is an important problem in practice, for example, 

for distributed database commit.
• [FLP] result shows limitations on the kind of algorithm one 

could hope to find, for agreement problems.
• To get around the impossibility result, one can:

0-valent

1-valent

଴ܥ

ଵܦ

ଵܥ଴ܦ

ሺ݌,݉ሻ

ሺ݌,݉ሻ

ሺ݌′,݉′ሻ

• Use random choices: [Ben-Or, 83]
• Rely on timing assumptions: [Dolev, Dwork, 

Stockmeyer, 87]
• Weaken requirements carefully: [Dwork, Lynch, 

Stockmeyer 88]:
• Agreement, validity always hold.
• Termination required if/when system behavior 

“stabilizes”:  no new failures, and timing within 
“normal” bounds.



More Impossibility Results:              
Timing-Dependent Systems

• Lundelius, Lynch.  An upper and lower bound for clock 
synchronization.  Information and Control, 1984.

• Attiya, Lynch. Time bounds for real-time process control in the 
presence of timing uncertainty.  Real-Time Systems 
Symposium, 1989.

• Lynch, Shavit.  Timing-based mutual exclusion. RTSS, 1992.
• Attiya, Dwork, Lynch, Stockmeyer.  Bounds on the time to reach 

agreement in the presence of timing uncertainty. JACM, 1993.
• Attiya, Lynch, Shavit.  Are wait-free algorithms fast?  JACM, 

1994.
• Fan, Lynch.  Gradient clock synchronization.  PODC, 2004; 

Distributed Computing, 2006.



More Impossibility Results
• Fekete, Lynch, Mansour, Spinelli.  The impossibility of 

implementing reliable communication in the face of crashes.  
JACM, 1993.

• Afek, Attiya, Fekete, Fischer, Lynch, 
Mansour, Wang, Zuck.  Reliable 
communication over unreliable channels.  
JACM, 1994.

• …
• Lynch.  A hundred impossibility proofs for 

distributed computing.  PODC 1989.
• Ellen, Ruppert.  Hundreds of impossibility 

results for distributed computing.  
Distributed Computing 2003.



More Impossibility Results: 
The CAP theorem

• Gilbert, Lynch.  Brewer's conjecture and the feasibility of 
consistent, available, partition-tolerant web services.
SIGACT NEWS, 2002.

• Gilbert, Lynch.  Perspectives on the CAP Theorem.
Computer, 2012.



[Gilbert, Lynch]
• Brewer's conjecture and the feasibility of consistent, 

available, partition-tolerant web services
• Published in SIGACT News; derived from an informal 

conjecture described by Brewer in a PODC 2000 keynote.
• Brewer described three desirable properties for Web 

services:
• Consistency: Data should appear atomic.
• Availability: Every request to perform an operation should eventually 

return some result.
• Partition-tolerance: Tolerates lost messages.

• Brewer’s informal claim:  In general, can’t achieve all three.
• We formalized the properties; identified several different 

versions, some possible, some impossible.



[Gilbert, Lynch]
• Consistent web services:  Atomic Read/Write data objects.
• Availability:  Read/Write requests should always return.
• Partition-tolerance: Any set of messages may be lost.
• We considered:

• Asynchronous and partially synchronous models.
• Whether/how consistency may be violated when messages are lost.

• Asynchronous case:  Unbounded message delay.
• Theorem 1: Impossible to guarantee availability, atomicity in 

all executions, while allowing any set of lost messages.
• Proof idea:  Partition the network into two parts, 
 ଵ, then aܩ ଶ.  Suppose a write occurs inܩ and	ଵܩ
read in ܩଶ.  Read can’t know about the write. ଵܩ ଶܩ

ଵܩ

ଶܩ



Asynchronous case
• Theorem 1: Impossible to guarantee availability, atomicity in 

all executions, while allowing any set of lost messages.
• Q:  What if we drop the atomicity requirement when 

partitions occur?
• Theorem 2:  Impossible to guarantee availability in all 

executions, atomicity in executions in which no messages 
are lost, while allowing any set of lost messages in general.

• Proof idea:  Processors don’t know whether messages have 
been lost, or may arrive later. 

• A violation of atomicity occurs at a finite 
point in time; then extend the execution to 
deliver all messages.

ଵܩ

ଶܩ



Partially synchronous case
• Local timers; not synchronized, increase at the same rate.
• Can schedule actions to occur at particular local times.
• Messages that aren’t lost are delivered within a known time delay.
• Theorem 3:  (like Theorem 1)  Impossible to guarantee availability, 

atomicity in all executions, while allowing any set of lost 
messages.

• Proof: Similar to Theorem 1.
• But now we get:
• Theorem 4: Possible to guarantee availability in all executions, 

atomicity in executions in which no messages are lost, while 
allowing any set of lost messages in general.

• Proof idea:  Now can detect lost messages.

ଵܩ

•ଶܩ Strengthen Theorem 4 to give interesting, 
weaker consistency guarantees even when 
messages are lost.
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3. Formal Modeling and Verification
• Lynch, Fischer.  On describing the behavior and 

implementation of distributed systems. Theoretical 
Computer Science, 1981.

• Lynch, Tuttle.  An introduction to Input/Output automata.  
CWI-Quarterly, 1989.

• Lynch,Tuttle.  Hierarchical correctness proofs for 
distributed algorithms.  PODC, 1987.

• Lynch, Multivalued possibilities mappings.  REX Workshop, 
1990

• Lynch, Vaandrager.  Forward and backward simulations.
Information and Computation 1995.
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Timed I/O Automata
• Lynch, Vaandrager. Forward and backward simulations II:  

Timing-based systems. Information and Computation 1996.

• Lynch, Segala, Vaandrager.  Hybrid 
I/O automata.  Information and 
Computation, 2003.

• Kaynar, Lynch, Segala, Vaandrager.  
The theory of timed I/O automata. 
Synthesis Lectures on Distributed 
Computing Theory 2006, 2010.



Probabilistic and Dynamic I/O Automata
• Lynch, Segala, Vaandrager.  Compositionality for 

probabilistic automata.  CONCUR, 2003.
• Lynch, Segala, Vaandrager.  Observing branching 

structure through probabilistic contexts.  SIAM J. 
Computing, 2007

• Attie, Lynch.  Dynamic input/output automata: a formal 
model for dynamic systems.  CONCUR 2001. Information 
and Computation, 2016.



Case Studies
• Heitmeyer, Lynch. The Generalized Railroad Crossing: a case study 

in formal verification of real-time systems. RTSS, 1994.
• Lygeros, Lynch.  Strings of vehicles: Modeling and safety conditions.

Hybrid Systems: Computation and Control, 1998.
• Dolginova, Lynch.  Safety verification for automated platoon 

maneuvers.  Intl. Workshop on Hybrid and Real-Time Systems, 1997.
• Livadas, Lygeros, Lynch.  High-level modeling and analysis of the 

Traffic alert and Collision Avoidance System (TCAS). RTSS, 1999.
• Mitra, Wang, Lynch, Feron.  Safety verification of model helicopter 

controller using Hybrid Input/Output automata.  HSCC, 2003.
• Fan, Droms, Griffeth, Lynch.  The DHCP failover protocol: A formal 

perspective. International Conference on Formal Techniques for 
Networked and Distributed Systems (FORTE), 2007.



Modeling Tools
• Lynch, Michel, Shvartsman.  Tempo: A toolkit for the 

Timed Input/Output Automata formalism.  Intl. Conf on 
Simulation Tools and Techniques for Communications, 
Networks, and Systems, 2008.

• Lynch, Garland, Kaynar, Michel, Shvartsman.  The Tempo 
language user guide and reference manual.  MIT, 2008.

• Georgiou, Lynch, Mavrommatis, 
Tauber.  Automated implementation 
of complex distributed algorithms 
specified in the IOA language.  
ISCA, 2005.  Software tools for 
technology transfer, 2009.
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4.  Algorithms for New Distributed Systems
• So far, I have described work on algorithms from traditional 

distributed systems.
• But for the past decade, we have been working on new 

types of distributed systems:  those in which                  
noise, uncertainty, and change predominate:
• Wireless networks
• Biological systems

• Same kinds of research:
• Abstract models for problems and algorithms.
• New algorithms.
• Proofs of correctness, performance,…
• Impossibility results and lower bounds.
• General foundations.



Wireless Networks
• Ad hoc, no central base station, usually mobile.
• Soldiers, first responders, explorers,…
• Challenge:  Find good communication layers to simplify the 

task of designing applications for ad hoc wireless networks.
• Idea 1: Virtual Node Layers
• Idea 2:  Abstract MAC (Reliable Local Broadcast) Layers



Idea 1:  Virtual Node Layers
• Dolev, Gilbert, Lynch, Shvartsman, Welch. GeoQuorums: Implementing 

atomic memory in mobile ad hoc networks. DISC 2003.
• Dolev, Gilbert, Lynch, Schiller, Shvartsman, Welch.  Virtual Mobile Nodes for 

mobile ad hoc networks. DISC, 2004.
• Dolev, Gilbert, Lahiani, Lynch, Nolte.  Timed Virtual Stationary Automata for 

mobile networks.  OPODIS, 2005.
• Dolev, Lahiani, Lynch, Nolte.  Self-stabilizing mobile node location 

management and message routing. Symp. on Self-Stabilizing Systems 
(SSS), 2005.

• Lynch, Mitra, Nolte.  Motion coordination using Virtual Nodes.  CDC, 2005.
• Brown, Gilbert, Lynch, Newport, Nolte, Spindel.  The Virtual Node layer: A 

programming abstraction for wireless sensor networks.  SIGBED Review, 
2007.

• Gilbert, Lynch, Mitra, Nolte.  Self-stabilizing robot formations over unreliable 
networks. ACM Transactions on Autonomous and Adaptive Systems, 2009.



Virtual Node Layers
• Simplify programming for an ad hoc mobile network by 

adding Virtual Nodes (VNs) at known locations.
• Write algorithms and applications using Virtual Nodes.
• Mobile nodes emulate Virtual Nodes:

• Each VN is emulated by nodes in its vicinity.
• Use a full replication or leader-based strategy.

• Applications:
• Implement atomic memory in a 

mobile network
• Geographical message routing
• Regional motion coordination:  

robot swarms, Virtual Traffic Lights, 
Virtual Air-Traffic Controllers,…



Virtual Traffic Light (VTL)
• For an intersection without a real traffic 

light.
• Computers in cars emulate a VN, which is  

programmed to act like a traffic light.
• Any policy desired, e.g., 30 sec in each 

direction.
• Cars see red or green, on local displays.
• VTL dies when no cars are around, but 

that’s OK.



Virtual Air-Traffic Controllers
• Aircraft in regions of airspace without 
ground-based controllers, e.g., the 
ocean.

• To control access to regions, use
VATCs, emulated by computers on 
the aircraft.

• VATC behaves like a human ATC:
• Keeps track of aircraft in local region.
• Tells neighbor ATCs when to hand off 

aircraft.
• Tells aircraft how to move within local 

region.



Dealing With Unreliable Communication

• Our Virtual Node work assumed a wireless 
communication model based on reliable local 
broadcast.

• But real wireless communication is not so 
reliable---it’s subject to collisions, with resulting 
message losses.



Message Collision Model
• In each round, some nodes transmit, the others 
listen.

• Transmitter hears only its own message. 
• Listener hears:

• Silence (٣), if none of its graph neighbors transmits.
• A message, if exactly one of its neighbors transmits.
• Collision ሺ١ሻ, if two or more neighbors transmit.



Idea 2:  Abstract MAC Layers
• Mask collisions within an abstract MAC layer.
• AKA a Reliable Local Broadcast (RLB) layer.
• Implement RLB using low-level collision-
management algorithms.

High-level Algorithm

RLB Layer
Implementation

Physical  Network

RLB

• Build higher-level 
algorithms over RLB.



Abstract MAC layers

• Kuhn, Lynch, Newport.  The abstract MAC layer.  DISC, 
2009.  Dist. Comp. 2011.

• Khabbazian, Kowalski, Kuhn, Lynch.  Decomposing 
broadcast algorithms using abstract MAC layers.
Ad Hoc Networks, 2014.

• Halldórsson, Holzer, Lynch.  A local broadcast layer for the 
SINR network model.  PODC 2015.



Remarks

• So, we can mask message collisions inside a 
Reliable Local Broadcast layer.

• Use RLB as an abstraction layer for developing 
higher-level algorithms.

• But: This work considers message collisions, but 
not communication uncertainty, i.e., uncertainty in 
where the messages reach.



Communication Uncertainty
• Use two graphs, and ᇱ

• Messages must  :ܩ reach.
• :  Messages mayܩ reach.

• [Clementi, Monti, Silvestri 04] [Kuhn, Lynch, Newport 09] 

	ܩ ൌ 	 ሺܸ, ሻܧ 	ܩ ൌ 	 ሺܸ, ,ܧ ሻܧ
ܧ		ܧ



Results for the Dual Graph Model
• Kuhn, Lynch, Newport.  Hardness of broadcasting in wireless 

networks with unreliable communication.  PODC, 2009.
• Kuhn, Lynch, Newport, Oshman, Richa. Broadcasting in 

unreliable radio networks. PODC 2010
• Ghaffari, Haeupler, Lynch, Newport.  Bounds on contention 

management in radio networks. DISC, 2012
• Ghaffari, Lynch, Newport. The cost of radio network broadcast for 

different models of unreliable links. PODC, 2013.
• Censor-Hillel, Gilbert, Kuhn, Lynch, Newport.  Structuring 

unreliable radio networks. DISC, 2014.
• Ghaffari, Kantor, Lynch, Newport.  Multi-message broadcast with 

abstract MAC layers and unreliable links. PODC, 2014.
• Lynch, Newport.  A (truly) local broadcast layer for unreliable radio 

networks. PODC, 2015.
• Gilbert, Lynch, Newport, Pajak.  On Simple Back-Off in Unreliable 

Radio Networks. OPODIS, 2018, Best Paper award.



Biological Systems
• Biological distributed algorithms:

• Insect colonies
• Developing organisms
• Brains

• Simple system models.
• Simple, flexible, robust, adaptive algorithms.
• Two complementary goals:

• Help to understand biological systems.
• Suggest new ideas 

for  wireless network 
algorithms.



Biological Systems
• Insect colony problems/algorithms:

• Task allocation in ant colonies
• Exploring for food (searching)
• Agreeing on a new nest (consensus)
• Colony density estimation

• Developing organisms:
• Scale-independent pattern formation (French Flag)

• Brains:
• Winner-take-all (leader election)
• Similarity detection
• Neural coding
• Temporal-spatial translation
• Learning



Conclusions
• My collaborators and I have worked on theory of distributed 

systems, to help understand their capabilities and limitations.
• This work has included:

• Abstract models for systems problems and algorithms.
• Rigorous proofs of correctness, performance,…, discovery of errors. 
• Impossibility results and lower bounds, expressing inherent limitations.
• New algorithms.
• General foundations for modeling, analyzing distributed systems.

• Many kinds of systems:
• Distributed data-management systems
• Wired, wireless communication systems
• Biological systems:  Insect colonies, developmental biology, brains.

• But there is still much more to be done!



Thanks to my many, many 
collaborators!

Thank you!


