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Abstract—This paper considers the problem of computing the
optimal trajectories of multiple mobile elements (e.g. robots,
vehicles, etc.) to minimize data collection latency in wireless
sensor networks (WSNs). By relying on slightly different as-
sumption, we define two interesting problems, the k-traveling
salesperson problem with neighborhood (k-TSPN) and the k-
rooted path cover problem with neighborhood (k-PCPN). Since
both problems are NP-hard, we propose constant factor approx-
imation algorithms for them. Our simulation results indicate our
algorithms outperform their alternatives.

Index Terms—Approximation algorithm, graph theory, wire-
less sensor network, mobile elements, traveling salesperson prob-
lem with neighborhood, k-rooted tree cover problem.

I. INTRODUCTION

A wireless sensor network (WSN) consists of spatially
distributed autonomous sensor nodes to cooperatively monitor
physical events or environmental conditions. In most WSNs,
each node has a limited energy source, and thus energy-
efficiency is a crucial issue. Typically, the data produced
by a node is sent to a designated data collector called a
sink via either long-range single-hop or short-range multi-
hop routing path. In wireless communication, the amount of
energy consumed to send a signal increases super-linearly
proportional to the travel distance of the signal. Therefore, the
single-hop communication tends to be very energy-exhaustive
in WSN. Meanwhile, the multi-hop communication makes the
nodes near the sink deplete much faster than the other nodes,
which results in shortening the lifetime of the WSN.

To address this issue, several mobile element (e.g. robot,
vehicles, etc.) based data collection strategies are introduced
to WSN [1], [2], [3], [4], [5], [6], [7], [8], in which no
sensor node performs multi-hop routing and one or more
mobile elements move around the sensor nodes deployed over
the area of interest. Once a mobile element is within the
communication range of a sensor node, the data accumulated
in the sensor node is forwarded to the mobile element. In
case that the mobile element has a long distance direct
communication channel to a sink, this data can be sent to
the sink immediately. Otherwise, the element must move to
some location to be connected to the sink. Clearly, such
mobile element based strategy alleviates the problem of the
multi-hop communication scheme since no node needs to be

involved in energy-exhaustive multi-hop message forwarding.
Furthermore, such method enables us to extract data even from
a disconnected WSN. However, while this approach can extend
the lifetime of WSN greatly, it generally suffers from huge
data latency due to the slow speed of the mobile elements.
Therefore, it is crucial to make the trajectories of the elements
shorter to minimize the latency.

In the target WSN of our research, data is delivered from
each node to the sink only through the mobile elements. We
assume there are k available mobile elements possibly located
at different places. We consider following two probable cases:
each mobile element is 1) only connected to the sink at their
original position and 2) directly connected to the sink at any
location. We also assume the speed of the mobile elements is
fixed to some constant. In such models, the worst case data
latency is heavily dependent on the length of the trajectories
of the mobile elements. Such a model has a wide range of
commercial and military applications [1], [9], [10]. Finally,
we assume the neighborhoods of any two nodes may overlap
with each other. Now, we list the contributions of this paper.

1) We propose two versatile problems, the k-traveling sales-
person problem with neighborhood (k-TSPN) and the k-
rooted path cover problem with neighborhood (k-PCPN).
The common goal of both problems is to find the trajec-
tories of the k mobile elements to collect data from the
n wireless sensor nodes on 2-D euclidean space such
that the data collection latency (the length of the longest
trajectory among k trajectories ) is minimized. In detail,

• k-TSPN assumes each mobile element can transmit
data to the sink only at its original (starting) location,
and therefore pursues k-rooted tours.

• k-PCPN assumes each mobile element is connected
to the sink at any location and thus seeks for k-rooted
paths.

• The neighborhood area of a node is defined as a circle
centered at the node with a constant radius no smaller
than one unit distance. Any two neighborhood areas
may overlap with each other. In both k-TSPN and
k-PCPN, a mobile element collects data from a node
only if the neighborhood of the node is visited by
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the element.
Both problems are NP-hard since their subclasses are
NP-hard (see Theorem 3.1 and Theorem 3.3). We would
like to emphasize that we assume each mobile element
may start from different positions unlike [8], in which
all mobile elements are assumed to start from the same
position.

2) We introduce the k-rooted tree cover problem with neigh-
borhood (k-TCPN), whose objective is similar to k-
PCPN and k-TSPN, but actually is to find k rooted
trees instead of paths (k-PCPN) or tours (k-TSPN). k-
TCPN is NP-hard since its subclass is NP-hard (see
Theorem 3.2). By Remark 1 and Remark 2, an 1.5α
approximation for k-PCPN and k-TSPN can be obtained
from an α-approximation for k-TCPN by utilizing the
1.5-approximation of the traveling salesperson problem
(TSP) by Christofides [17].

3) We propose a constant factor approximation algorithm for
the general minimum spanning tree with neighborhood
(GMSTN) problem, whose goal is, given a set of nodes,
to find a minimum spanning tree (MST) of a set of
the uniform circular overlapperable neighborhoods of the
nodes. Based on this algorithm, we propose a constant
factor approximation for k-TCPN. As a result, we obtain
a constant factor approximation for k-PCPN and k-TSPN.

4) Given k roots and n nodes, the goal of the k-rooted tree
cover problem1 is to find k rooted trees such that the
weight of the heaviest tree is minimized [13]. Naturally,
any algorithm for this problem can be used to produce
a feasible solution of the k-TCPN, and thus is useful to
solve k-PCPN and k-TSPN. In simulation, we compare
the outputs of our approximation strategies for k-PCPN
and k-TSPN with the k-paths and k-tours computed by
utilizing the (4 + ε)-approximation algorithm for the
k-rooted tree cover problem [13]. Our simulation re-
sults indicate our algorithms outperform these alternative
methods.

We claim k-TSPN and k-PCPN versatile since they can be
used to model various problems outside wireless network
research community. For example, the problem of computing
the trajectories of multiple ground vehicles with video cameras
(note that it is sufficient to be in the neighborhood of each
point of interest to take a picture) such that the time for the
operator to collect the information of the area of interests can
be minimized can be modeled using k-PCPN if the vehicles
have long range radio communication devices, otherwise using
k-TSPN since the vehicles must return back to their base
station.

The rest of this paper is organized as follows. Section II
introduces related work. In Section III, we introduce several
important notations, the definitions of the problems, and their
NP-hardness proofs. Our major contributions which include

1In [13], this problem is referred as the R-rooted tree cover problem. In
this paper, we will use k instead of R to refer the number of available mobile
elements (roots), while R is used to refer the set of k mobile elements.

several constant factor approximation algorithms are intro-
duced in Section IV. The simulation results are presented in
Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

Largely, existing mobility-assisted data collection strategies
are classified into following three categories [2]: random
mobility, predictable mobility, and controlled mobility. Data
Mobile Ubiquitous LAN Extensions (MULEs) is one of the
seminary works in the random mobility class, in which several
mobile nodes move around and collect data from the sensor
nodes [3]. Eventually, they meet a sink and deliver the data to
the sink. The authors in [4] used a queuing system to model the
data collection process using mobile elements with predictable
mobility. In [5], the SenCar, a fully controllable mobile sink,
is introduced to collect the data from sensor nodes. The work
also demonstrated the importance of finding a proper trajectory
for the mobile element to accomplish its job successfully. Note
that our work is in the third category.

In the traveling salesperson problem with neighborhood
(TSPN), a set of nodes each of which has a uniform circular
neighborhood with radius 1 is given and a tour visiting the
neighborhood areas of all nodes with minimum total length is
sought. In [6], [7], the problem of finding the shortest tour
of a single mobile element to collect the data from a set
of uniform sensor nodes is modeled as TSPN and heuristic
algorithms are proposed. Dumitrescu and Mitchell proposed a
polynomial time (π + 8)(1 + ε)-approximation algorithm for
TSPN with overlappable circular neighborhoods, where ε is a
small positive constant [11]. In [19], Mitchell also introduced
a constant factor approximation algorithm for TSPN with
pairwise disjoint arbitrary-shaped connected neighborhoods
satisfying some condition. However, the existing algorithms
for TSPN cannot be directly applied to our k-TSPN since we
may need to find k ≥ 1 tours.

The k-traveling salesperson problem (k-TSP) is to find k-
tours originated from the same spot such that each node is
visited by at least one of the tours and the length of longest
tour is minimized. The k-SPLITOUR by Frederickson et al. is
the first constant factor approximation for k-TSP [12]. In [8],
k-SPLITOUR is used as a heuristic to find the tours of k-
robots to collect the data from sensor nodes. Note that our
k-TSPN is a generalization of their problem since in k-TSPN,
the initial location of each robot may be different.

In the k-rooted tree cover problem, a set of nodes and k
roots, which are possibly at different locations, are given,
and k rooted trees are sought such that each node is in
some tree and the total edge weight of the heaviest tree is
minimized. The authors in [13] proposed a polynomial time
(4+ε)-approximation algorithm for this problem. The unrooted
version of the k-rooted tree cover problem is studied in [14],
[15]. However, it is conjectured that a solution for the unrooted
version cannot be used for the rooted version [13]. Clearly,
the (4 + ε)-approximation algorithm can be used to obtain a
feasible solution of our k-TCPN problem since a tree visiting
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the centers of a set of nodes also visits the neighborhoods of
all of the nodes.

In the minimum spanning tree with neighborhood (MSTN)
problem, a set of nodes each of which has a uniform circular
neighborhood is given and an MST of the neighborhood areas
of all nodes is sought. The authors of [16] assumed no two
neighborhood areas overlap with each other and proposed a
7.4-approximation algorithm, two 3-approximation algorithms,
and one polynomial time approximation scheme (PTAS) for
MSTN. This algorithm cannot be used for k-TCPN since
the neighborhoods of nodes may overlap with each other
in k-TCPN and we are interested in k rooted trees of the
neighborhoods for some k > 1.

III. NOTATIONS AND PROBLEM DEFINITIONS

In this paper, V = {v1, v2, · · · , vn} is the set of n sensor
nodes and R = {r1, r2, · · · , rk} is the set of k mobile
elements (or roots). For any vi ∈ V , N(vi) is the disk (circular
neighborhood area) which is centered at vi and whose radius is
d ≥ 1. G = (V,E) is a graph with a node set V = V (G) and
an edge (a straight line or a curve segment) set E = E(G).
Len(G) =

∑
(vi,vj)∈E(G) L(vi, vj), where L(vi, vj) is the

length of the edge between vi, vj ∈ V (G). Eucdist(vi, vj)
is the eculidean distance of vi and vj . In this paper, we say
two disks (or neighborhoods) are “touching” with each other
if their borders are adjacent with each other.

Definition 3.1 (k-TSPN): Given a 〈V,R〉 pair, the k-
traveling salesperson problem with neighborhood (k-TSPN)
is to find a set of k tours U = {U1, U2, · · · , Uk} such
that 1) each Ui starts from and ends at ri, 2) for each
vj ∈ V , ∃u ∈ V (Ui) for some i such that u is in (or on
the border of) N(vj) , the neighborhood area of vj , and 3)
Cost(U) = max1≤i≤k Len(Ui) is minimized.

Definition 3.2 (k-PCPN): Given a 〈V,R〉 pair, the k-rooted
path cover problem with neighborhood (k-PCPN) is to find a
set of k paths P = {P1, P2, · · · , Pk} such that 1) each Pi is
rooted at ri, 2) for each vj ∈ V , ∃u ∈ V (Pi) for some i such
that u is in (or on the border of) N(vj), and 3) Cost(P ) =
max1≤i≤k Len(Pi) is minimized.

Definition 3.3 (k-TCPN): Given a 〈V,R〉 pair, the k-rooted
tree cover problem with neighborhood (k-TCPN) is to find a
set of k trees T = {T1, T2, · · · , Tk} such that 1) each Ti is
rooted at ri, 2) for each vj ∈ V , ∃u ∈ V (Ti) for some i such
that u is in (or on the border of) N(vj), and 3) Cost(T ) =
max1≤i≤k Len(Ti) is minimized.

Theorem 3.1: k-TSPN is NP-hard.
Proof: This is true since TSPN, which is a special case

of k-TSPN in which k = 1, is NP-hard [11], [18].
Theorem 3.2: k-TCPN is NP-hard.

Proof: Since a special case of k-TCPN is NP-hard in
which k = 1, d = 1, and no two different N(vi) and N(vj)
overlaps with each other [16], k-TCPN is NP-hard.

Theorem 3.3: k-PCPN is NP-hard.
Proof: Consider a special case of k-PCPN in which k is 1

and d, the radius of the neighborhood area of each node, goes
to zero. Under the restrictions, k-PCPN is equivalent to the

problem of finding a minimum total length path rooted at the
only root r and visiting all nodes in V . Now, from the k-PCPN
instance, we construct a directed graph Gs with {r}

⋃
V as

its vertex set by establishing directed edges
1) from r to each u ∈ V with edge cost Eucdist(r, u),
2) from each node u ∈ V to r with edge cost 0, and
3) from u ∈ V to v ∈ V with edge cost Eucdist(u, v) for

every possible u, v pair.
Clearly, an exact algorithm for the special case of k-PCPN (i.e.
k = 1 and d = 0) would solve the asymmetric TSP in Gs,
a very well-known NP-hard problem, within polynomial time.
As a result, the special case of k-PCPN has to be NP-hard,
and so does k-PCPN in general.

IV. MAIN RESULTS

Before presenting our main results, we would like to
emphasize we assume that any pair of neighborhoods may
overlap with each other. If we assume all neighborhoods are
completely pairwise-disjoint, constant factor approximations
of k-TCPN, k-TSPN, and k-PCPN can be easily obtained as
follows.

1) Given a set V of n nodes and a set R of k roots, apply
the (4+ ε)-approximation algorithm for the k-rooted tree
cover problem in [13]. As a result, we have k-rooted trees
Tc = {T1, T2, · · · , Tk} such that each tree Ti is rooted
at ri ∈ R and each node in V is visited by some tree in
Tc.

2) For each rooted tree Ti ∈ Tc, apply the (1 + ε)-
approximation algorithm for MSTN in [16] to ri and
V (Ti). As a result, we obtain a tree T ′i spanning over
ri and the neighborhoods of all nodes in Ti.

3) Convert each T ′i into a tour or a path using the famous
1.5-approximation for TSP by Christofides [17]. (See
Remark 1 and Remark 2 for details).

One can easily see the performance ratio of this strategy is
roughly 4 · 1 = 4 for k-TCPN and 4 · 1 · 1.5 = 6 for k-
TSPN and k-PCPN. However, it is not practical to assume
that the neighborhood areas are always pairwise-disjoint. This
is because many applications of WSN consider scenarios, in
which a number of sensor nodes are randomly deployed. If
some pairs of neighborhoods overlaps with each other, this ap-
proximation strategy cannot be applied since the performance
analysis in [13], [16] heavily relies on the pairwise-disjointness
of neighborhoods.

In [16], the authors studied MSTN where no two neighbor-
hoods overlap with each other. Let us call a variation of MSTN
where the neighborhood areas of nodes in V may overlap and
the radius of each circular neighborhood is a constant d as
the general MSTN (GMSTN) problem. In Section IV-A, we
introduce GMSTNA, a constant factor approximation of the
GMSTN problem. In Section IV-B, we exploit GMSTNA to
obtain a constant factor approximation algorithm of k-TCPN,
and further optimize this algorithm in Section IV-C. Finally,
the constant factor approximations of k-TSPN and k-PCPN
are proposed in Section IV-D.
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Algorithm 1 General Minimum Spanning Tree with Neigh-
borhood Algorithm (GMSTNA) (V = {v1, · · · , vn})

1: Let D = {N(v1), · · · , N(vn)}. We compute I ⊂ D, the
set of maximal independent (pairwise-disjoint) neighbor-
hoods of the nodes in V as follows (also, see Fig 1(a)).

(a) Color all disks in D white.
(b) Color one white disk N(vi) black and every white disk

N(vj) which are overlapping (or touching) with N(vi)
gray.

(c) Repeat Step (c) until there is no white disk left.
(d) Add all black disks to I .

2: Compute an MST T centerI of the centers of the disks in I
(see Fig 1(b)).

3: Let Tout be an empty graph. For each edge (vi, vj) in
T centerI , add the external segment (type 1 edge) of the
edge connecting N(vi) and N(vj) as an edge of Tout.
Also, for each N(v) ∈ I , add the round tour (type 2
edge) following N(v) as an edge of Tout. For each point
where a type 1 edge and a type 2 edge meet, we add this
point as a vertex of Tout (see Fig 1(c)).

4: Output Tout.

A. GMSTNA: A Constant Factor Approximation of GMSTN

In this section, we propose a constant factor approximation
algorithm for the GMSTN problem, namely the general mini-
mum spanning tree with neighborhood algorithm (GMSTNA).
We would like to emphasize that GMSTN is for computing an
MST of the neighborhoods of a set of nodes and there is no
concept of root node. GMSTNA consists of following three
major steps. In the first step, a set I of the pair-wise disjoint
neighborhood areas of the nodes in V is identified by using
a 2-coloring strategy. In the second step, an MST T centerI of
the center of the disks in I is computed. At this point, T centerI

is spanning over every N(vi) ∈ I , but may not cover some
N(vj) /∈ I . Due to this reason, in the final step, we modify
T centerI to Tout, which touches the neighborhood area of every
node in V . Algorithm 1 is the description of GMSTNA. Now,
we show this is a constant factor approximation of the GMSTN
problem.

Lemma 4.1: Len(Tout) ≤ (d(2π − 1) + 1)Len(T centermst−I ) +
2πd, where T centermst−I is the MST of the centers of the disks in I
in the first step of GMSTNA, Tout is an output of GMSTNA,
and d is the radius of the circular neighborhood area (disk) of
each node.

Proof: We first assume |T centermst−I | ≥ 2. Consider
the center vi of a disk N(vi) in I . Then, vi is con-
nected to a set of nodes {w1, w2, · · · , wli} in T centermst−I
(see Fig 2). Let {(vi, w1), (vi, w2), · · · , (vi, wli)} and
{p1, p2, · · · , pli} be the set of points where each edge in
{(vi, w1), (vi, w2), · · · , (vi, wli)} intersects with the boundary
of N(vi). Let {q1, q2, · · · , qli} be the points on the mid-
dle of each edge in {(vi, w1), (vi, w2), · · · , (vi, wli)}. Then,
T centermst−I can be partitioned into a set of clusters C(vi) of

(a)

v v

v

(b) (c)

v v

v

v v

v

Fig. 1. These figures illustrate how GMSTNA works. In Figure (a), a maximal
pairwise-disjoint disks, each of which is centered at one of {v1, v2, v3} are
selected. In Figure (b), an MST T center

I of {v1, v2, v3} is computed. In
Figure (c), for each N(vi) in I , the internal segments of each edge connected
to vi is removed from T center

I and the boundary of each disk selected in the
first step is added to T center

I .

edges {(vi, q1), (vi, q2), · · · , (vi, qli)} such that
⋃
∀i C(vi) =

T centermst−I and for any different i and j, there is no edge segment
shared by C(vi) and C(vj). Also, let {a1, a2, · · · , ali} be the
set of arcs such that ai is the portion of the boundary of N(vi)
from ai to a(i+1) mod li . Note that the union of the li arcs is
the whole boundary of N(vi).

Now, let αi =
∑

1≤j≤li Eucdist(vi, qj). Since no two disks
in I overlap with each other, d ≤ Eucdist(vi, qj) for all j.
Also, from our assumption, d ≥ 1. As a result, we have li ≤
li · d ≤ αi. Then,

Len(Tout)
Len(T centermst−I )

=
∑
i(αi − li · d+ 2πd)∑

i αi
. (1)

For each i, we have

αi − li · d+ 2πd
αi

= 1 + d(
2π − li
αi

)

≤ 1 + d(
2π − li
li

) /* if 2π − li ≥ 0*/

≤ d(2π − 1) + 1, /* reach maximum when li = 1*/

(2)

since we assumed |T centermst−I | ≥ 2, which implies li ≥ 1. Note
that in Equation (2), if 2π − li < 0, then 1 + d( 2π−li

α ) ≤ 1 ≤
d(2π − 1) + 1. Next, suppose |T centermst−I | = 1. Then, we have

Len(Tout) ≤ 2πd. (3)

By combining Equation (1)∼(3), we can conclude that
Len(Tout) ≤ (d(2π − 1) + 1)Len(T centermst−I ) + 2πd.

Lemma 4.2: [16] Given a set V of nodes {v1, v2, · · · , vn},
let T centermst−I and T diskmst−I be an MST of V and an MST of
a set of “non-overlapping” disks {N(v1), · · · , N(vn)}. Then,
Len(T centermst−I ) ≤ (1 + 20

π )Len(T diskmst−I) + 2d, where d is the
uniform radius of the disks.

Theorem 4.3: Suppose Tout is an output of GMSTNA and
T diskmst is an MST of the neighborhood areas of all nodes in V .

Then, Len(Tout) ≤ (d(2π − 1) + 1)((1 +
20
π

)Len(T diskmst ) +
2d) + 2πd.

Proof: From Lemma 4.1, we have Len(Tout) ≤ (d(2π−
1) + 1)Len(T centermst−I ) + 2πd. Since all of the disks in I are
pair-wise disjoint with each other, by Lemma 4.2, we have
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Fig. 2. A maximal pair-wise disjoint disks with radius d and associated
notations for the performance analysis.

Len(T centermst−I ) ≤ (1 + 20
π )Len(T diskmst−I) + 2d, where T diskmst−I

is an MST of the disks in I . In addition, Len(T diskmst−I) ≤
Len(T diskmst ) since T diskmst−I is spanning over less number of
disks than T diskmst and both of them are MSTs. In conclusion,
we have

Len(Tout) ≤ (d(2π − 1) + 1)Len(T centermst−I ) + 2πd

≤ (d(2π − 1) + 1)((1 + 20/π)Len(T diskmst−I) + 2d) + 2πd

≤ (d(2π − 1) + 1)((1 + 20/π)Len(T diskmst ) + 2d) + 2πd.

B. k-TCPNA: A Constant Factor Approximation of k-TCPN

Now, we introduce our constant factor approximation al-
gorithm for k-TCPN, namely the k-tree cover problem with
neighborhood algorithm (k-TCPNA). In the first step, k-
TCPNA computes a maximal pair-wise disjoint set I of the
circular neighborhood areas (disks) of all nodes in V . This can
be done by using a variation of the 2-coloring strategy (see
Step 1 of Algorithm 2 for more details). Our coloring strategy
offers the following two important properties to the disks in
I . First, no two disks in I overlap (or touch) with each other.
Second, no disk in I overlaps with the neighborhood of any
root N(ri).

In the second step, the (4 + ε)-approximation algorithm for
the k-rooted tree cover problem in [13] is applied over the
centers of the disks in I and R. As a result, we have k rooted
trees, TM = {T1, T2, · · · , Tk}. We would like to emphasize

1) each Ti is rooted at ri,
2) the neighborhoods of any pair of nodes in V (Ti) includ-

ing N(ri) do not overlap (or touch) with each other,
3) most importantly, there are some nodes in V whose

neighborhoods are not covered by any Ti since their
neighborhoods are overlapping with some disk(s) in I .

In the third step, the third step of GMSTNA in Section IV-A
(Algorithm 1) is applied to V (Ti) for each Ti ∈ TM .
Apparently, after this step, the neighborhood area of each
node in V has to be visited by some tree, and therefore, we
can obtain a feasible solution of k-TCPN. Note that each tree
resulted from the third step of k-TCPNA may have a curve in
its edge set, which can be replaced with a shorter direct line.

Algorithm 2 k-rooted Tree Cover Problem with Neighbor-
hood Algorithm (k-TCPNA) (R = {r1, · · · , rk}, V )

1: Suppose D = {N(r1), · · · , N(rk), N(v1), · · · , N(vn)}.
Compute a subset I ⊆ D as follows.

(a) Color all disks in D white.
(b) Color all N(ri)s in D black and the N(vj)s overlapping

(or touching) with any N(ri) gray.
(c) Find a white N(vi) which is overlapping (or touching)

with the most number of white N(vj)s for some j, and
color the N(vi) black and the N(vj)s gray.

(d) Repeat Step (c) until there exists no white disks in D.
(e) Add all black N(vi)s into I (not N(rj)s).

As a result, I is a maximal independent (pairwise-disjoint)
neighborhoods of the nodes in D \ {N(r1), · · · , N(rk)}.

2: Apply the (4+ε)-approximation algorithm for the k-rooted
tree cover problem in [13] on the centers of the disks in
I and the k mobile elements in R. As a result, we have a
set TM = {T1, T2, · · · , Tk} of k rooted trees, where each
Ti is rooted at ri. For each Ti ∈ TM , if Ti is not an MST
of V (Ti), we force it.

3: For each Ti (an MST with root ri), apply Step 3 of
GMSTNA in Section IV-A on V (Ti) (including ri) and
obtain T ′i .

4: Suppose Tout = {T ′1, T ′2, · · · , T ′k}. Apply our optimiza-
tion strategy in Section IV-C on Tout to eliminate all of
curves from E(T ′i ) for each T ′i ∈ Tout and connect each
T ′i to ri.

Therefore, in the last step, the algorithm further optimizes the
output. More details of this step will be introduced in the
following subsection.

Algorithm 2 is the formal definition of k-TCPNA. Now, we
show that Algorithm 2 is a constant factor approximation of
k-TCPN.

Observe that after Step 1.(b), the neighborhood areas of two
different ri and rj may overlap with each other. However, this
does not hinder us from applying our performance analysis of
Algorithm 1 to the performance analysis of Algorithm 2 since
in each Ti in Step 2, the neighborhood areas of all nodes in
Ti are disjoint with each other.

Lemma 4.4: Consider a set R of k roots and a set of nodes
V = {v1, v2, · · · , vn} such that their circular neighborhoods
with radius d are “pairwise disjoint” with each other. Let
OPT center−I and OPT disk−I be the optimal solution of
the k-rooted tree cover problem and k-TCPN defined over
〈V,R〉, respectively. Then, Cost(OPT center−I) ≤ (1 +
20/π)Cost(OPT disk−I) + 2d.

Proof: Suppose we have OPT disk−I . Now, from
OPT disk−I , construct a feasible solution S = {T̃1, · · · , T̃k}
of the k-rooted tree cover problem instance defined over
〈R, V 〉 as follows: for each Ti in OPT disk−I , let W =
{w1, w2, · · · , wl} be the set of nodes whose neighborhoods
are touched by Ti. Then, we can construct an MST T̃i of
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W
⋃
{ri}. Clearly, Cost(OPT center−I) ≤ Cost(S) since

OPT center−I is an optimal solution.
Now, suppose T disk−Imax is the tree in OPT disk−I with

maximum total edge weight. Then, by Lemma 4.2, for any
T̃j ∈ S, we have Len(T̃j) ≤ (1+ 20

π )Len(T disk−Imax )+2d, and
therefore, we have

Cost(OPT center−I) ≤ Cost(S) = max∀j Len(T̃j)
≤ (1 + 20

π )Len(T disk−Imax ) + 2d
= (1 + 20

π )Cost(OPT disk−I) + 2d.

Theorem 4.5: k-TCPNA is a constant factor approximation
of k-TCPN.

Proof: Let T disk−Vmax and T center−Imax be the tree T ′i ∈ Tout
with the maximum total weight and the tree Tj ∈ TM with
the maximum total weight after the completion of k-TCPNA,
respectively. We would like to remind you that Tout is covering
the neighborhoods of all nodes, while TM is covering the
centers of the disks in I . From Lemma 4.1, we have

Len(T disk−Vmax ) ≤ (d(2π−1)+1)Len(T center−Imax )+2πd. (4)

Now, suppose VI is the set of centers of disks in I . Let
OPT center−Imax be the maximum cost tree in an optimal solution
of the k-rooted tree cover problem defined over VI . Since in
Algorithm 2, we used a (4 + ε)-approximation algorithm for
the k-rooted tree cover problem in [13], we have

Len(T center−Imax ) ≤ (4 + ε)Len(OPT center−Imax ). (5)

Furthermore, from Lemma 4.4, we have

Len(OPT center−Imax )

≤ (1 + 20/π)Len(OPT disk−Imax ) + 2d

≤ (1 + 20/π)Len(OPT disk−Vmax ) + 2d,

(6)

where OPT disk−Imax is the maximum cost tree in an optimal
solution of the k-TCPN defined over I and OPT disk−Vmax is
the maximum cost tree in an optimal solution of the k-TCPN
defined over V . By combining Equations (4)∼(6), we have

Cost(Tout) = Len(T disk−Vmax )

≤ (d(2π − 1) + 1)Len(T center−Imax ) + 2πd

≤ (d(2π − 1) + 1)(4 + ε)Len(OPT center−Imax ) + 2πd
≤ (4 + ε) · (d(2π − 1) + 1)·

((1 + 20/π)Cost(OPT disk−Vmax ) + 2d) + 2πd.
(7)

C. Optimization of k-TCPNA

Each tree in Tout, an output of Algorithm 2 may contain
curves (i.e. neighborhood boundaries). Therefore, we can
further reduce the cost of the output by carefully replacing
the curves with straight lines.

In detail, consider Tout = {T ′1, T ′2, · · · , T ′k} and
TM = {T1, T2, · · · , Tk} in Algorithm 2. Suppose A =

v

v

r

(a) (b)

(c) (d)

w
w

w

w

w
w

w

w

w

w w
w w
w

w
w

w

w

Fig. 3. (a): a set of k rooted trees are obtained (the thick lines and curves)
by executing Algorithm 2. (b): a set of points {w1, w2, w3, w4, w5} are
selected. Note that, each of these points are shared by a disk centered at a
node outside the rooted trees and a disk centered at a node inside some rooted
tree. Also, observe that a point wj for some cj will be added to Xi only if
V (Ti) has the node which is nearest to the center of cj (i.e. v0 for w1 and v1
for w4) than another other rooted tree in Tout, the output of Algorithm 2. (c):
a set of points (i.e. {w6, w7, w8, w9} in the figure) are selected and added to
Xi for each Ti. Note that an MST over them connects all the neighborhoods
of the nodes in V (Ti). (d): for each Xi, we remove some useless points
using the set-cover approximation strategy (i.e. w2 is preferred over w1 since
w2 covers {c1, c2, N(v0)} while w1 only covers {c1, N(v0)}) and induce
X̃i ⊆ Xi, and calculate an MST of X̃i.

V
⋂

(T1

⋃
T2

⋃
· · ·

⋃
Tk) and B = V \A. Now, we construct a

set of subsets X = {X1, X2, · · · , Xk} as follows (see Fig 3):

1) For each node u ∈ B, find its nearest node v ∈ A.
Then, v ∈ V (Tj) for some 1 ≤ j ≤ k. Note that N(u)
and N(v) must overlap (or touching) with each other.
Consider an edge e connecting u and v. Let w be the
point where e and N(u) meet (the set of big bold points
{w1, w2, w3, w4, w5} in Fig 3(b)). Add w to Xj .

2) For each T ′i , suppose ẽ is an edge in T ′i connecting two
disks N(u) and N(v) such that u, v ∈ Ti (the set of big
bold points {w6, w7, w8, w9} in Fig 3(c)). Add the two
points where T ′i and N(u) meet and T ′i and N(v) meet
to Xi for every ẽ in T ′i .

3) After the first step, we have a set of nodes Xi for each i
such that each disk centered at a node in Ti includes at
least one point in Xi. In fact, we can think of this as an
instance of the set-cover problem and thus further reduce
the size of Xi using a famous set-cover approximation
algorithm. In detail, let Di be disk which is centered at
some node in Ti. Next, prepare an empty set X̃i and we
repeat the following until Di is empty.

a) Pick a point x ∈ Xi which covers the most number of
disks in Di (x covers a disk if x is in the disk).

b) Add x to X̃i and remove all the disks covered by x.
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4) Compute an MST XTi of each X̃i.
5) Finally, outputs XTout = {XT1, XT2, · · · , XTk}.

Clearly, XTout is a feasible solution of k-TCPN since it
includes k rooted trees and the neighborhood of each node
in V is visited by one of the trees. Also, Cost(XTout) ≤
Cost(Tout) since a) with our optimization method, each
circular neighborhood added in the second step of Algorithm 1
can replaced by a set of straight lines connecting some points
on the circular neighborhood, and b) the cost of the final MST
is even smaller than this.

Observe that each XTi may not connected to ri and
the distance from ri to its nearest node in V (XTi) is at
most d. Strictly speaking, Step 4) above should be “Add
ri to X̃i and compute an MST XTi of each X̃i”, and we
have Cost(XTout) ≤ Cost(Tout) + d. After this necessary
modification, from Equation (7), we finally have

Cost(XTout) ≤ (4 + ε) · (d(2π − 1) + 1)·
((1 + 20/π)Cost(OPT disk−Vmax ) + 2d) + (2π + 1)d.

(8)

D. Constant Factor Approximations of k-TSPN and k-PCPN

We first present following remark (Remark 1) demonstrating
an interesting relationship between k-TCPN and k-PCPN,
which leads to a constant factor approximation of k-PCPN
(Theorem 4.6). We would like to make a note that a concept
similar to Remark 1 is used in [13], but has not been
formally proven. Similarly, a constant factor approximation
algorithm for k-TSPN can be obtained (Corollary 4.1) from
the relationship between k-TCPN and k-TSPN (Remark 2).

Remark 1: An α-approximation algorithm for k-TCPN can
be modified to obtain an 1.5α-approximation for k-PCPN in
polynomial time.

Proof: Note that a problem instance of both k-TCPN
and k-PCPN consists of a set R = {r1, r2, · · · , rn} of k
roots and a set V = {v1, v2, · · · , vn} of n nodes. Suppose
we have applied an α-approximation algorithm for k-TCPN
and obtained a feasible solution T = {T1, · · · , Tk}. Let
Tmax = max1≤i≤k Len(Ti) = Cost(T ).

Since the performance ratio of this algorithm is α, we have

Len(Ti) ≤ Len(Tmax) ≤ αLen(T optmax), (9)

for all i, where T optmax is a tree in an optimal solution of k-
TCPN with the maximum cost.

Next, convert each tree Ti rooted at ri into a tour T ′i of all
the nodes in V (Ti) using the famous 1.5-approximation for
TSP by Christofides [17]. At last, convert each tour Ui into a
path Pi by removing an edge between ri and a node in the
tour. Then, we have

Len(Pi) ≤ Len(Ui) ≤ 1.5Len(Ti) (10)

for every 1 ≤ i ≤ k. By combining Equation (9) and
Equation (10), we have

Len(Pi) ≤ 1.5αLen(T optmax). (11)

Furthermore, we have

Len(T optmax) ≤ Len(P optmax), (12)

since a path is a special type of a tree, where P optmax is a path
with the maximum cost in an optimal solution of k-PCPN.
From Equation (11) and Equation (12), we have

Len(Pi) ≤ 1.5αLen(P optmax),

for all 1 ≤ i ≤ k.
In summary, by utilizing an α-approximation algorithm for

k-TCPN and the 1.5-approximation for TSP, we can obtain
1.5α-approximation for k-PCPN. In addition, the procedure
would take O(n2) time. Therefore, this theorem holds true.

Remark 2: An α-approximation algorithm for k-TCPN can
be modified to obtain an 1.5α-approximation for k-TSPN in
polynomial time.

Proof: From Equation (9) and Equation (10), we have

Len(Ui) ≤ 1.5αLen(T optmax).

By combining this with

Len(T optmax) ≤ Len(Uoptmax),

where Uoptmax is the maximum length tour in an optimal solution
of k-TSPN, we can prove this theorem.

Theorem 4.6: There exists a constant factor approximation
algorithm for k-PCPN.

Proof: From Theorem 4.5 and Remark 1, we have a
polynomial approximation algorithm for k-PCPN whose cost
is bounded by

(4 + ε)·
((d(2π − 1) + 1)((1 + 20

π )Cost(OPTT ) + 2d) + (2π + 1)d)
≤ 1.5 · (4 + ε)·

((d(2π − 1) + 1)((1 + 20
π )Cost(OPTP ) + 2d) + (2π + 1)d),

where Cost(OPTT ) the cost of an optimal solution of k-
TCPN, Cost(OPTP ) is the cost of an optimal solution of
k-PCPN, d ≥ 1 is the radius of the circular neighborhood
area of each node in V , and ε is a small positive constant.

Corollary 4.1: There exists a constant factor approxima-
tion algorithm for k-TSPN.

Proof: This naturally follows from Theorem 4.6 after we
replace OPTP to OPTU , where OPTU is an optimal solution
of k-TSPN.

V. SIMULATION RESULTS AND DISCUSSION

As we mentioned before, the (4 + ε)-approximation algo-
rithm for the k-rooted tree cover problem in [13], can compute
feasible solutions for k-TCPN, k-TSPN, and k-PCPN. To the
best of our knowledge, this is the only algorithm to compete
with our algorithms for solving k-TCPN, k-TSPN, and k-
PCPN, where the mobile elements are randomly deployed. In
the rest of this section, we call this algorithm “k-TCPA”.

In this simulation, we first prepare a x × x virtual 2-D
space and randomly deploy a number of nodes, where x is 10,
15, or 30. Then, we randomly deploy n nodes and k mobile
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(a) (b)

(c) (d)

Fig. 4. These figures illustrate how Algorithm 2 work. The bold crosses are
the locations of the mobile elements and the small dots are sensor nodes. In
Figure (a), the set of pairwise-disjoint circles are selected (those with bold
border lines). Note that the neighborhoods of mobile elements are always
selected. In Figure (b), the (4 + ε)-approximation algorithm for the k-rooted
tree cover problem [13] is applied to the union of selected centers and
mobile elements from Figure (a). As a result, we have three rooted-trees
(each connected with black lines). For each rooted-tree, each point where
the neighborhood of selected node (or center) and the line in the tree meet is
marked. In Figure (c), each node v which is not selected in Figure (a) identifies
a node u which is 1) closest to v and 2) selected in Figure (a). Then, draw
a line l between v and u, and mark the point where the neighborhood of v
meets l. In Figure (d), for each rooted-tree, an MST of the marked points
from Figure (b) and Figure (c) are constructed. Note that not all of them are
necessary to be connected and thus some of them are not considered for this
final tree construction as discussed in Section IV-C.

elements, where n is 30, 50, or 70, and k is 3 or 6. For each
parameter setting with x, k, and n fixed, we generate 100
problem instances and calculate the average of the cost of the
outputs of k-TCPA and our k-TCPNA (optimized version).
In detail, we first apply both k-TCPA and our k-TCPNA and
generate solutions of k-TCPN. Then, we convert their outputs
to solutions of k-PCPN and k-TSPN.

Table I summarizes our simulation results. In the table, we
use the following two metrics for the performance comparison.
The first one is the improvement ratio (IR), which is defined
as

cost of output of k-TCPA− cost of output of k-TCPNA
cost of output of k-TCPA

.

The second metric is the direct ratio (DR), which is defined
as

cost of output of k-TCPNA
cost of output of k-TCPA

.

Note that k-TCPNA outperforms k-TCPA as IR increases and
as DR decreases. In the table, Tree-IR, Tour-IR, and Path-IR

TABLE I
THE SIMULATION RESULTS INDICATES THAT OUR ALGORITHM

(k-TCPNA) OUTPERFORMS THE (4 + ε)-APPROXIMATION ALGORITHM
FOR THE k-ROOTED TREE COVER PROBLEM IN [13] (k-TCPA) IN TERMS
OF SOLVING k-TCPN, k-TSPN, AND k-PCPN. THE PERFORMANCE GAP

GETS LARGER AS THE DENSITY OF THE NETWORK GOES UP.

(a) 10× 10 space with k = 3

n Tree-IR Tree-DR Tour-IR Tour-DR Path-IR Path-DR
30 0.313 0.687 0.251 0.749 0.263 0.737
50 0.355 0.645 0.308 0.692 0.320 0.680
70 0.435 0.565 0.381 0.619 0.389 0.611

(b) 10× 10 space with k = 6

n Tree-IR Tree-DR Tour-IR Tour-DR Path-IR Path-DR
30 0.182 0.818 0.132 0.868 0.135 0.865
50 0.188 0.812 0.147 0.853 0.177 0.823
70 0.270 0.730 0.239 0.761 0.255 0.745

(c) 15× 15 space with k = 3

n Tree-IR Tree-DR Tour-IR Tour-DR Path-IR Path-DR
30 0.263 0.737 0.210 0.790 0.215 0.785
50 0.276 0.724 0.241 0.759 0.26 0.74
70 0.322 0.678 0.273 0.727 0.282 0.718

(d) 15× 15 space with k = 6

n Tree-IR Tree-DR Tour-IR Tour-DR Path-IR Path-DR
30 0.192 0.808 0.132 0.868 0.135 0.865
50 0.219 0.781 0.175 0.825 0.191 0.809
70 0.275 0.725 0.234 0.766 0.255 0.745

(e) 30× 30 space with k = 3

n Tree-IR Tree-DR Tour-IR Tour-DR Path-IR Path-DR
30 0.166 0.834 0.129 0.871 0.118 0.882
50 0.156 0.844 0.126 0.874 0.123 0.877
70 0.188 0.812 0.156 0.844 0.160 0.840

(f) 30× 30 space with k = 6

n Tree-IR Tree-DR Tour-IR Tour-DR Path-IR Path-DR
30 0.177 0.823 0.118 0.882 0.101 0.899
50 0.187 0.813 0.128 0.872 0.121 0.879
70 0.190 0.810 0.159 0.841 0.152 0.848

refer to the IR in the calculation of k-TCPN, k-TSPN, and k-
PCPN, respectively. Tree-DR, Tour-DR, and Path-DR are also
defined similarly.

Now, we make following three claims and explain how each
claim is supported by our simulation results.
• Claim 1: As the number of nodes increases, k-TCPNA

outperforms k-TCPA.
• Claim 2: As the size of the virtual space decreases, k-

TCPNA outperforms k-TCPA.
• Claim 3: As we have less number of mobile elements,
k-TCPNA outperforms k-TCPA.

To see the correctness of Claim 1, we compare the rows
within the same table. In Table II(a), when n = 30, Tour-IR
is 0.251 and Path-IR is 0.263. The IR value becomes much
bigger with n = 70, in which Tour-IR is 0.381 and Path-IR is
0.389. Since a larger IR value implies k-TCPNA outperforms
k-TCPA, this claim is supported by this table. Since such a
trend is consistently observed in Table II(b) to Table II(f), our
claim is supported by the simulation results.

To see the correctness of Claim 2, we compare Table II(a),
Table II(c), and Table II(e) (say Group 1). Also, we need
to compare Table II(b), and Table II(d), and Table II(f) (say
Group 2). In Group 1, k is fixed to 3. When n = 30, Tour-
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IR are 0.251, 0.210, 0.129, and Path-IR are 0.263, 0.215,
0.118 in the space with size 10 × 10 (Table II(a)), 15 × 15
(Table II(c)), and 30×30 (Table II(e)), respectively. In addition,
when n = 70, Tour-IR are 0.381, 0.273, 0.156, and Path-IR are
0.389, 0.282, 0.160 in the space with size 10×10 (Table II(a)),
15× 15 (Table II(c)), and 30× 30 (Table II(e)), respectively.
As we can see, independent of n, Claim 2 is true since when
the size of the virtual space is small, IR goes up. In fact,
the similar trend can be observed in the tables in Group 2.
Therefore, Claim 2 is supported by the simulation results.

Lastly, to see the correctness of Claim 3, we compare
Table II(a) with Table II(b), Table II(c) with Table II(d), and
Table II(e) with Table II(f), respectively. In general, with n and
the size of virtual space fixed, the performance gap between
them becomes larger with small k, and this claim is true. This
is because with more number of mobile nodes, the workload
among the available mobile elements is better distributed, and
that helps to reduce the performance gap between k-TCPNA
and k-TCPA.

Clearly, from Claim 1 and Claim 2, we can conclude
that our algorithm k-TCPNA outperforms k-TCPA in denser
WSN. The fact, k-TCPA ignores the neighborhood of each
node and visits each node directly while k-TCPNA visits the
neighborhood of each node in an intelligent way, could be one
contributing factor. However, from the simulation results, we
can learn that the design of k-TCPNA, to visit non overlapping
neighborhoods first and expand the tree minimally works very
effectively.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of computing the
optimal trajectories of multiple mobile elements (e.g. robots,
vehicles, etc.) to minimize data collection latency in wireless
sensor networks (WSNs). Depending on slightly different
assumption, we propose two versatile problems. Since both
of them are NP-hard, we propose constant factor approxi-
mation algorithms for them. Our simulation results show our
algorithms outperform their competitors on average. Still, our
results pose several interesting future work. First, since our
algorithms for k-TSPN and k-PCPN produce solutions through
several steps of conversions, their approximation ratios are not
small. While our simulation result indicate the performance
of our algorithms are much better than any existing solution
on average, the investigation of direct approaches to obtain
approximations with smaller worst case bound for the k-TSPN
and k-PCPN are of great theoretical interest. Second, our
formulations did not reflect some of the application specific
constraints such as the data ratio of each sensor node. Thus,
integrating such new requirements into our models would be
of great network research interest.
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