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Abstract—In this paper, we propose a new multiple-sink posi-
tioning problem in wireless sensor networks to best support real-
time applications. We formally define this problem as the -Sink
Placement Problem ( -SPP) and prove that it is APX-complete. We
show that an existing approximation algorithm for the well-known

-center problem is a constant factor approximation of -SPP.
Furthermore, we introduce a new greedy algorithm for -SPP and
prove its approximation ratio is very near to the best achievable, 2.
Via simulations, we show our algorithm outperforms its competitor
on average.

Index Terms—Graph theory, greedy approximation algorithms,
network center placement problem, wireless sensor networks
(WSNs).

I. INTRODUCTION

R ECENTLY, wireless sensor networks (WSNs) have been
investigated for a number of real-world applications. The

primary goal of WSNs is observing specified events and, once
an event is detected, notifying the occurrence of the event to
a designated collector, which is generally called a sink or a
gateway, for further processing. Usually, a sink is assumed to
have an almost unlimited energy source and computation power,
and sometimes mobility. Generally, a sensor node communi-
cates with its neighbors using radio frequency (RF) signals,
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which consume more energy superlinearly proportional to their
travel distance. Since each sensor node has a limited power
source such as a battery, energy efficiency is one of the most cru-
cial issues of WSNs. Therefore, multihop communication is pre-
ferred over long-range direct communication in WSNs. In mul-
tihop WSNs, the amount of energy spent to deliver a message
and the latency of the message are proportional to the number
of hops in the path over which the message travels.

Most earlier papers in this field studied a WSN with a single
sink. They assumed the sink is fixed and tried to improve the
performance (i.e., lifetime, latency, etc.) of the WSN using var-
ious approaches. However, in many applications of WSNs such
as battlefield monitoring or wildfire detection, the sink has mo-
bility and can be repositioned. This fact motivated many people
to study the optimal sink repositioning problem to maximize the
lifetime of WSNs [1], [2]. More recently, people realized that
by introducing multiple sinks, the performance of WSNs can be
greatly boosted and the WSNs can be more scalable. The ma-
jority of them studied the multiple-sink placement problem to
maximize the lifetime of WSNs [3]–[10]. Some others used this
idea to minimize the average data latency of WSNs [11], [12].

In this paper, we consider a new multiple-sink placement
problem for applications where timeliness is a critical issue. We
noticed that while the “average data latency” is a good perfor-
mance measurement for some applications of WSNs, there are
many other applications of WSNs, such as battlefield surveil-
lance and intrusion detection, in which it is extremely impor-
tant to know the “worst-case data latency” so that the applica-
tions can schedule and execute their jobs without violating their
real-time constraints (i.e., job deadline). Clearly, if we can make
the worst-case data latency smaller, we can improve the per-
formance of a real-time system. It is known that the latency of
a message is proportional to the number of hops that the mes-
sage travels in multihop wireless networks [12]. Therefore, we
can conclude that the latency bound can be reduced by care-
fully placing the available sinks. Based on the observations and
facts, given available sinks due to the limitation of budget and
resources, the problem of how to minimize the maximum data
latency from a node to its nearest sink can be abstracted as the

-Sink Placement Problem ( -SPP), whose goal is to minimize
the maximum hop distance between a node and its nearest sink.
We provide the formal definition of -SPP and its APX-com-
pleteness proof in Section V.

The following is the summary of the contributions of this
paper.

1) We formally define -SPP and prove -SPP is APX-com-
plete by showing there is no -approximation algo-
rithm unless , where is a small positive con-
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stant. This is done by showing in a subclass of unit disk
graph (UDG; see Section III for its definition) that -SPP
is equal to an existing APX-complete problem, which can
be approximated no better than 2 unless .

2) We show that an existing approximation algorithm
for the -center problem [17], GREEDY- -CENTER,
is also an approximation algorithm for -SPP. In
our analysis, we show given a -SPP instance

- , where is
an output of the approximation algorithm for the -center
problem, which is also a feasible solution of -SPP,

is the cost of a feasible solution (i.e., ) of the
-SPP instance (i.e., the maximum hop distance from a

node to its nearest sink over the shortest hop path between
them), and - is an optimal solution of the -SPP
instance.

3) To get a better quality solution, we introduce a new
simple greedy algorithm, which uses a larger, but still
polynomial-size, feasible solution space . That is, we
notice that given an input UDG , an output of
GREEDY- -CENTER is a subset of . In contrast, our
new algorithm uses a simple graph theoretical technique
to compute a new solution space such that an optimal
solution of -SPP is a subset of . Then, the algorithm,
namely GREEDY- -SPP, applies a simple greedy strategy
to get a feasible solution of -SPP. We show given a

-SPP instance - ,
where is an output of GREEDY- -SPP. This means
that even in the worst case, the cost of an output of this
algorithm is within three times from the cost of an optimal
solution. Furthermore, as the cost of - grows,
the performance ratio of this algorithm is nearly 2, which
is the best possible performance ratio for -SPP.

4) Through simulations, we show that GREEDY- -SPP out-
performs its competitor on average.

The rest of this paper is organized as follows. In Section II,
we introduce the related work. Section III presents the
notations, definitions, and assumptions of our work. In
Section IV, we present preliminaries that include an ex-
isting approximation algorithm for the -center problem,
namely GREEDY- -CENTER, and we prove that, in fact,
GREEDY- -CENTER is a constant factor approximation for

-SPP. In Section V, we formally define -SPP and show it
is APX-complete. In Section VI, we introduce a new greedy
approximation algorithm for -SPP and its corresponding
theoretical analysis. The simulation results and analysis are
given in Section VII. Finally, Section VIII makes a conclusion
and suggests several future research directions.

II. RELATED WORK

In a WSN with a single sink, the hop distance between each
node and the sink increases as the network size grows, which
results in longer data latency and shorter network lifetime. To
make sensor networks more scalable, more than one sink is em-
ployed [3]–[12]. There are several research issues regarding this

approach. In this paper, we focus on how to find the best posi-
tions of sinks given an optimization goal.

Oyman and Ersoy showed that by having multiple sinks in
a large-scale WSN, the manageability of the network increases
and the energy dissipation at each node decreases [5]. They also
found that by properly placing the sinks, their benefit can be
maximized, which coincides with the conclusion of [4]. Natu-
rally, this research topic attracted lots of researchers. Especially,
many efforts are made to extend the lifetime of WSNs by de-
ploying multiple sinks carefully [3]–[10]. Given that the traffic
generated by each node, current energy level of each node, the
maximum number of available sinks, and the set of candidate
positions to place the sinks are known, the majority of the pa-
pers tried to extend the lifespan of WSNs by exploiting linear
programming-based techniques [3], [7], [8], [10]. The authors
in [6] used the same assumptions and incorporated an interfer-
ence model and fault tolerance consideration into their linear
programming formulation separately. Interestingly, in [9], an
electrostatic model was proposed to find the best positions for
sinks. They observed that nodes closer to a sink are exhausted
faster for relaying messages and suggested to move the sinks
near to those nodes with sufficient energy. In detail, they assign
positive charge to all sinks and those nodes whose energy levels
are below average. On the other hand, negative charge is given
to the rest of nodes. In their algorithm, the sinks are distributed
through the electrostatic field and relocated somewhere close
to those nodes with higher energy level. In [11] and [12], the
authors tried to find the locations of sinks such that the av-
erage euclidean distance between nodes and their nearest sink
is minimized. Solutions for this formulation can be applied to
the WSNs, in which each node communicates with its nearest
sink (in terms of euclidean distance) directly regardless of how
far they are apart. Note that those problems are variations of the
facility location problem (FLP).

The FLP is one of the very popular research topics in the
operations research and management science societies. It has
a number of variations, and most of them are NP-complete.
Therefore, considerable attention has been made to design ap-
proximation algorithms (see [13] for a survey). Generally, the
following parameters are given as an input of FLP: a set to
locate facilities, a set of cities (or clients or nodes), a cost
function for opening facility , and a connection cost

for connecting client to facility . Then, the goal of FLP
is to find a subset such that the total cost (or equiv-
alently average cost) to open a facility in each location in
and connect each city to a facility is minimized. The metric
(or euclidean) -center problem [14] has an objective function
similar to that of -SPP’s. That is, the object of the -center
problem is to minimize the maximum hop distance between a
node and its nearest sink. However, unlike -SPP, the -center
problem requires choosing the centers from existing nodes in
the graph. Since in -SPP, a sink can be located at any place, the

-center problem can be considered as a special case of -SPP,
and thus -SPP is harder. In the rest of this paper, we denote
the -center problem by -CENTER. Due to its gravity, we re-
visit -CENTER and introduce an existing 2-approximation al-
gorithm for it in Section IV-A.
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III. NOTATIONS, DEFINITIONS, AND ASSUMPTIONS

Now, we introduce some notations and definitions that are
frequently used in the rest of this paper. is the
euclidean distance between two nodes and .
is the hop distance between two nodes and over the shortest
path between them. A graph is a unit disk graph (UDG) if for
each pair of nodes and , there is a bidirectional edge between
them if and only if the euclidean distance between and is no
more than 1. In this paper, we use
to represent a UDG. is the cost of a feasible solution
of -SPP. In Section V, we formally introduce this function.

such that , and
is the set of -hop neighbors of a node . For simplicity,

(i.e., the set of the direct neighbors of ). Similarly, for
a node set . For a node

. We will also use and interchangeably.
A subset is a dominating set (DS) of only if, ,
either or . A subset is an independent
set (IS) of only if . A subset
is a maximal independent set (MIS) only if is an IS and

is not an IS anymore (i.e., is neighboring to
some node in ). is an MIS of . Note that an MIS of

is also a DS of . -DS is a subset such that ,
either or .

In this paper, we have the following assumptions. 1) WSNs
are homogeneous networks (every node has the same physical
characteristics such as maximum communication range) on a
2-D plane. 2) Both nodes and sinks have equal transmission
range. 3) The global coordinate of each node and each sink
can be obtained using some existing methods (i.e., localiza-
tion algorithm [15]) or a hardware [i.e., global positioning
system (GPS)]. 4) Input graphs are connected. The reasons for
these assumptions are given in Section VII.

IV. PRELIMINARIES

A. (Metric/Euclidean) -Center Problem and Its
2-Approximation

Given a graph -CENTER is to find a size
subset such that the maximum hop distance between
a node in and its nearest center in is as small as pos-
sible [14]. In [16], it is proved that -CENTER is APX-com-
plete for general graphs such that there exists no approximation
algorithm whose performance ratio is better than 2. The proof is
done by reducing -CENTER from the minimum DS problem.
That is, given a graph , determining if we have a
DS of of size no more than is equivalent to the existence
of centers of with cost 1, where is a com-
plete graph constructed from such that for each

and its weight is 1 only if . Otherwise,
and its weight is 2.

There are many existing approximation algorithms for
-CENTER. For example, we can use the simple greedy algo-

rithm in [17] (Algorithm 1), which achieves the best possible
approximation ratio 2 for -CENTER. Originally, -CENTER
requires the cost to connect two nodes and to satisfy the
triangular inequality. However, in the rest of this paper, we will
assume the cost to be specifically since this is

Fig. 1. This example illustrates how Algorithm 1 works. Suppose � � �. First,
the algorithm picks a node. (a) Suppose � is chosen. (b) Second, the algorithm
selects the farthest node from � , which is � . At last, the algorithm picks any
of �� � � � � � � � since each of them is adjacent to one of the selected nodes.
(c) Suppose � is selected. At the end, this algorithm puts three sinks very near
to � � � , and � .

the metric that -SPP is using and it also satisfies the triangular
inequality due to the fact that each edge incurs a uniform cost.
The idea behind Algorithm 1 is quite simple: Select a center one
by one such that the hop distances between the newly selected

Algorithm 1: GREEDY- -CENTER

1: Set and .
2: Randomly select a vertex and set and

.
3: while do
4: Select such that

5: and .
6: end while

center and existing centers can be maximized. In detail, we first
arbitrarily select a node as the first center. Next, choose an-
other node among the rest of nodes of that is the farthest
from . Generally, if we have chosen , then
the th center is chosen from ,
such that the minimum hop distance between and each

is maximized. Continue this process until all
centers are placed. Fig. 1 is an example illustrating how this

algorithm works.
Here, we provide a brief sketch of the proof to show that the

performance ratio of GREEDY- -CENTER is 2. Any interested
reader can find more details from [18]. We would like to empha-
size that as the algorithm chooses more centers, the maximum
distance from a node to a center does not increase (remain the
same or decrease).

Now, we prove this by contradiction. Suppose that after the
algorithm selected centers

- (1)

is true, where is an output of the algorithm
and - is an optimal solution. Let
be the node that is farthest from . Now, assign each element
in to its nearest center in - . By the Pigeonhole
Principle, there has to be at least one pair of nodes, ,
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that share the same nearest center in - . By
the assumption (1), the hop distance between any pair of nodes
in is greater than -
[i.e., - ]. However,
if - is true, then
by the triangular inequality, both and cannot be within

- hops from at the same time, which
contradicts: 1) our initial assumption (1); and 2) the assertion
that is the nearest member of an optimal solution to and .
As a result, - is true, and
the performance ratio of GREEDY- -CENTER is 2. Hochbaum
and Shmoys also proposed another 2-approximation algorithm
for -CENTER using a power graph technique [19]. However,
since this is not close to our work, we will not describe the
details.

B. Performance Analysis of GREEDY- -CENTER for -SPP

In -SPP, a sink can be placed anywhere on the euclidean
plane. Therefore, by putting a sink on each node selected by
Algorithm 1, we can have a feasible solution of -SPP, which is
not necessarily an optimal solution of -SPP. In this section, we
prove Algorithm 1 is a constant factor approximation for -SPP.
Let be a set of nodes chosen by Algorithm 1. Then, from [18],
we know

- (2)

where - is an optimal solution of -CENTER.
To see the performance ratio of Algorithm 1 for -SPP, we
need to find the relationship between -
and - , where - is an optimal
solution of -SPP. For example, if we can prove that

- - for
some , we can combine this with (2) and prove that

- . Now, we present two
important lemmas and bound to a constant based on the
lemmas. As a result, we can prove that GREEDY- -CENTER
is a constant factor approximation for -SPP.

Lemma 4.1: Suppose is -hop dominated by a subset
of . Then, is also -hop dominated by

Proof: Let be a node in . Now, suppose is -hop
dominated by another node, say . Then, there has
to be a path of length at most connecting and ,
where is a neighbor of . It follows is connected with some
node in or included in . Hence, is

-hop dominated by some node in .
Lemma 4.2: Let be a connected graph with size . Then,

there is a 4-DS of whose size is no more than , which implies
that there is a 4-DS of whose size is exactly (by adding some
redundant nodes).

Proof: We prove this lemma by induction on the size of
4-DS. The basis step of this lemma is very easy to prove since
when , a connected graph with size 5 is easily 4-hop
dominated by one node. As the induction hypothesis, consider
a connected graph of size and a 4-DS of the graph whose
size is less than or equal to . Now, we need to show that for a
connected graph with nodes, there is a 4-DS whose size
is no more than . Suppose is a spanning tree over
and is the longest path in . Let be a set

Fig. 2. Suppose we have a 4-DS for � (big circles). Then, � which � -hop
dominates � , in � is at most 4 hops far from some � in � . The hop distance
between two neighboring nodes � and � in� is at most �� �� in�. There-
fore, each node in � must have at least one node in � such that their distance
is at most �� � � hops.

of nodes in , and sorted by the order of their appearance in
and and are two leaves. Now, remove an edge between
and and partition into and . Without loss
of generality, we assume . Then,

and can be 4-hop dominated by one node, . On the
other hand, , and by the induction hypothesis,

can be 4-hop dominated by nodes. Therefore,
can be 4-hop dominated by nodes, and so does .

Theorem 4.3: Given a -SPP instance,
- is true, where is an output of

Algorithm 1 over the problem instance.
Proof: It is easy to see -

- since in -SPP, we have more
choices to put sinks. We first show -

- , and combine this with (2) to prove this
theorem. Suppose we have - .
Then, we can compute a subset

. Let - . Then,
there is one fact we would like to emphasize.

• Fact 1: Since - is an optimal solution of -SPP,
is -hop dominated by - , and by Lemma 4.1,
is also -hop dominated by .

Now, we construct a new graph from as
follows: The vertex set of corresponds to the set , and there
is an edge between two vertices and in if there exist
two nodes and in such that ,
and . We would like to recall the following facts.

• Fact 2: and exist in both and .
• Fact 3: If and are two neighboring nodes in , in

(3)

• Fact 4: -
because for any in any UDG [20].

By Lemma 4.2 and Fact 4, there exists a 4-DS of whose
size is . Let be such
4-DS of . In , what is the maximum hop distance from
any sensor node to its nearest node in ? By Fact 1, there
should be that -hop dominates in for some ,
which implies in . In has to be
4-hop dominated by some node in , say , which implies

[from (3)]. As a re-
sult, we have
(see Fig. 2). Now, suppose we place a sink on each node in
to solve -SPP. Then, we have

-

- (4)
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Fig. 3. For any two adjacent nodes � and � on the circle, their distance
���������� �	 
 � ������	 � � �������	 
 . For any two nonad-
jacent nodes � and �, their distance �����������	 � � �������	 �
� �������	 
 .

Finally, from (2) and (4), we have
- .

C. Lower Bound of Approximation Ratio of
GREEDY- -CENTER for -SPP

In Section IV-B, we showed that the approximation ratio
(the worst-case performance ratio) of GREEDY- -CENTER
for -SPP is 26. Here, we show the approximation ratio of
GREEDY- -CENTER for -SPP has to be at least 5. Sup-
pose a circle whose radius is exactly 1 and is centered at

(Fig. 3). Put 11 nodes dividing the circle evenly. Then,
for any two adjacent nodes and on the circle, their dis-
tance ,
and for any two nonadjacent nodes and , their distance

. Now,
consider a -SPP problem instance, where . Then, the
cost of an optimal solution for -SPP over such a graph (Fig. 3)
is 1, and this can be archived by putting the unique sink on the
center . However, if we are forced to put the center on one
of the 11 nodes on the border as with GREEDY- -CENTER,
then the cost of the solution should be 5 in this example.
As a result, the lower bound of the approximation ratio of
GREEDY- -CENTER for -SPP is 5.

V. FORMAL DEFINITION OF -SPP AND ITS

APX-COMPLETENESS

Now, we formally define -SPP and prove its APX-complete-
ness by showing that there is no constant factor approxima-
tion algorithm whose performance ratio is lower than 2 unless

.
Definition 5.1 [ -Sink Placement Problem ( -SPP)]:

Given a UDG representing a WSN, -SPP
is to determine the positions of sinks such that

is minimized, where
and is the

set of sinks.
Lemma 5.1 [21]: Suppose is a planar graph with maximum

degree 4. Then, can be embedded in the plane using
area such that each element of is at an integer coordinate
and each element of is drawn so that it is made up of a
line segment of the form or , for integers and .

Theorem 5.2: There is no -approximation algorithm
for -SPP unless , where is a positive constant.

Fig. 4. Grid embedding of the graph	 , where the stars denote the additional
added nodes that make the obtained grid graph
 (which is isomorphic to	 )
into a UDG 
 .

Proof: We prove that -SPP is APX-complete in grid
graphs with some special properties, which are in a subclass of
UDGs. Clearly, if -SPP is APX-complete for these grid graphs,
then it is also APX-complete for UDGs. Let be a family
of planar graphs with maximum degree 3. By Lemma 5.1, we
can embed graphs in into a grid space to get a family of
grid graphs. There can be more than one way to implement this
idea. For our proof purpose, we are going to use the embedding
scheme introduced by Clark et al. [22]. In detail, they embed
each graph into the plane and have a grid graph in
such a way that we have the following.

1) For each edge of has one or more corresponding
line segments that are parallel to the -axis or -axis.

2) No two parallel lines in are closer than three.
3) Each line segment in has an integer length.
4) The sum of line segments’ length in for an edge

in is for some integer .
In this method, they add additional nodes at grid point,

which are equally spaced on each line segment representing an
edge of . This makes the grid graph into a UDG
(see Fig. 4 for an example). From now on, we denote the set of
all such obtained from by . It is known that
finding a DS with minimum cardinality for graphs in , planar
graphs with maximum degree 3 is NP-complete [23]. Using this
fact and the grid embedding above, [22, Theorem 5.1] showed
that finding a minimum DS in , so called the grid dominating
set problem, is also NP-complete. However, [22] only provides
a sketch of the proof of the theorem. Therefore, we give a formal
proof of this fact in Lemma 5.3 for completeness.

In [16], it was shown that -CENTER is APX-complete for
general graphs. Now, using a similar argument, we show that

-CENTER remains to be APX-complete for graphs in .
For each , we construct an abstract edge-weighted
complete graph as follows: Set and
establish an edge between every pair of nodes. For each
pair of node , use one as the edge weight of

if . Otherwise, assign two
as the edge weight. Then, in , the existence of a solution
of -CENTER with minimum cost one is equivalent to the
existence of a DS in whose size is less than or equal to
(the decision version of the dominating set problem in ),
which is NP-complete according to our previous assertion.
Therefore, we cannot have a -approximation algorithm
for -CENTER for graphs unless .

To complete the proof, we show that -SPP is equivalent
to -CENTER for graphs in . Suppose we have an optimal
solution to -SPP for and . If
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Fig. 5. All possible cases of a sink and its neighbors grid nodes are shown
in Cases (a)–(c) in a � . In Cases (a) and (b), we move the sink to any of its
neighboring grid points. In Case (c), we move the sink to the grid point in the
middle. After the operations, if a sink is �-hop dominating a set of nodes in� ,
it still �-hop dominates the same set of nodes.

some sinks in do not lie on a grid point, then we can al-
ways move each of them to one of its neighboring grid points
to obtain another solution due to the followings reasons.
First of all, in , each sink has at most three neighbors by
our second and third construction rules for . All possible sit-
uations for the comparative positions of a sink and its adjacent
sensors are given in Fig. 5(a)–(c). In the cases of Fig. 5(a) and
(b), we can move the sink to one of its neighboring grid points;
in the case of Fig. 5(c), we can move the sink to its neighboring
grid point in the middle. Note that in the case that a sink domi-
nates two nodes whose distance is exactly two, we do not need
to relocate the sink since it is on a grid point already. Given
that the operations described above are performed, now we show
that still -hop dominates the same set of nodes as
did. Let be any node in that is -hop dominated by a sink

that is not on a grid point. In the cases of Fig. 5(a) and
(b), must be -hop dominated by one of the grid points
adjacent to . Thus, after moving onto one of the neighboring
grid points, still -hop dominates . Similarly, in the case of
Fig. 5(c), must be -hop dominated by one of the three
grid points adjacent to . If is -hop dominated by the
middle grid point (on the bottom left corner), after moving to
this point, is -hop far from , and hence is -hop dom-
inated by . On the other hand, if is -hop dominated by
one of the other two grid points, after moving to the middle
grid point, is still -hop dominated by . This shows the equiv-
alence of -SPP and -CENTER in . Therefore, -SPP is also
APX-complete, and there is no -approximation algorithm
for it either.

Lemma 5.3: The problem of computing minimum cardinality
dominating set in is NP-complete.

Proof: We show that has a DS with
if and only if , which is a grid graph computed from
following the construction rules, has a DS with

(5)

Suppose that has a DS with . First,
we claim that we can construct a DS of satisfying (5).
Assume that is already embedded into the grid space. Let

be an edge of , the total length of the line segments
representing which is for some integer . Note that
is obtained from by replacing the edge with a
path , where each is the newly
added grid point. Now, we construct as follows.

Rule 1-1: Include all nodes in to .

Rule 1-2: For each , if neither nor is in ,
put nodes into . Note that all nodes
in except and are dominated by the selected nodes.
Rule 1-3: For each , if either or is in , say

. Put into . Note that all nodes in
path are dominated by .

Then, we have

Next, we show that every node in is dominated by . In
fact, let be any nodes in . Suppose that lies on a path

. Consider the following cases.
Case 1-1: If and and , then

is dominated (or coincides with) by some nodes in
, according to Rule 1-2.

Case 1-2: If or , say , and , then
is adjacent to a node in graph .

Assume that is replaced by a path
in . According to Rule 1-3,

is dominated by the node in graph .
Case 1-3: If either or , say , then is
either dominated by (or coincides with) or some nodes
in .

Combining the analysis above, our first claim holds.
On the other hand, suppose that has a DS of size

with . We claim that has a DS
of size . Let be any edge in and

the corresponding path in . A
key fact that we are going to use is that we always have

. That is, there are at least nodes in that
lie on the interior of the path . Now, construct as follows.

Rule 2-1: Include all nodes into .
Rule 2-2: For each edge if

, then include either or into .
It is clear that . Next, we show that is a DS of
. Let be any nodes in and be an edge in .

If either or is in , then is either in or dominated by .
If neither nor is in , we consider the following cases.

Case 2-1: There are at least nodes in lying on
the interior of the path with as two endpoints. In this
case, either or is in —a contradiction. Thus, this case
does not happen.
Case 2-2: There are exactly nodes in lying on the
interior of the path with as two endpoints. Let

be an edge in , and let the corresponding paths
in be such that is
dominated by in . If

, then or is selected to . Since it is assumed
that , we must have , i.e., is dominated by

. Otherwise, if , then we
must have , and hence by our construction.
Thus, is still dominated by .

Thus, in any case, is either in or dominated by . Our
second claim holds. Since finding a DS with minimum cardi-
nality is NP-complete for graphs in [23], we can conclude
that finding a minimum DS for graphs in is NP-complete,
either.
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VI. BETTER APPROXIMATION ALGORITHM FOR -SPP

Previously, we showed that GREEDY- -CENTER, an ex-
isting 2-approximation algorithm for -CENTER, is a constant
factor approximation algorithm for -SPP. This algorithm is
very simple and therefore it is fast and easy to be implemented
in both centralized and distributed environments. However, this
approach has a limitation. In fact, we can easily imagine a sit-
uation in which by allowing to put each sink on any place in
euclidean space, we may find a better solution.

Algorithm 2: Get-Feasible-Solution-Space

1: Set .
2: For each pair of nodes and in such that

, suppose and are the centers of
two unit disks whose borders are passing both and .
Set . In case that ,
we have only one such unit disk whose center is . Then,
set .

3: Return .

In this section, we introduce a better approximation algorithm
for -SPP. One reason that -SPP seems very difficult to deal
with is the feasible solution space of this problem is infinite. To
overcome its high complexity, we construct a set of positions
to locate the sinks such that an optimal solution is a subset of
this set. We show the size of this set is actually finite and can be
computed in a polynomial time: For each pair of sensor nodes
within euclidean distance two, find at most two unit disks whose
boundaries are passing through these two nodes. Then, the cen-
ters of all of such unit disks are potential candidates to place
sinks (for a formal description, see Algorithm 2). Among all
optimal solutions, we can always find a canonical one included
in the candidate solution space (see Lemma 2.2).

Next, we apply out new approximation algorithm
(Algorithm 3) on this set to find an approximate solution.
The spirit of the algorithm is similar to the greedy algorithm for

-CENTER (Algorithm 1). However, here we fully employ the
geometry of UDG to get a better result. As a result, we can show
given a -SPP instance, -
where is an output of GREEDY- -SPP. This means that
even in the worst case, the cost of an output of this algorithm
is within three times from the cost of an optimal solution.
Furthermore, as the cost of - grows, the performance
ratio of this algorithm is nearly 2.

Lemma 6.1 [24]: If a unit disk covers a set of at least two
sensor nodes, we can always move it to a position where it still
covers all sensor nodes in and its boundary passes through at
least two sensor nodes in (See Fig. 6).

Lemma 6.2: The output by Algorithm 2 always includes at
least one optimal solution of -SPP.

Proof: Let - be an optimal
solution for -SPP. By Lemma 6.1, for each unit disk centered at

and a set of nodes inside the disk such that , there
has to be another unit disk whose boundary passes two nodes
in and still covers (i.e., contained in the disk or lay on the
boundary of the disk) all other nodes in . On the other hand,

Fig. 6. (a) Move the unit disk down until its boundary meets a node in �.
(b) Using the node on the boundary as a center, rotate the unit disk until its
boundary meets another node in �. (c) The unit disk now has a position where
it still covers � and its boundary passes through two nodes in �.

suppose , say . Since the UDG is connected,
there has to be another sensor node such that

. Then, again, by Lemma 6.1, we can move the disk such that
it passes through and . Suppose each is moved to as de-
scribed. Then, - (the output
of Algorithm 2) is true, and - is still an optimal solu-
tion for -SPP.

Lemma 6.3: The time complexity of Algorithm 2 is ,
and the size of its output is bounded by .

Proof: In Algorithm 2, we add two nodes to for each
pair of nodes in . Therefore, , and this can
be done in a polynomial time.

Algorithm 3: GREEDY- -SPP

1: Get-Feasible-Solution-Space
2: Set and .
3: Randomly select and set .
4: Select , which is adjacent to , and set

. A tie can be broken by randomly selecting
one node.

5: For to do
6: Select such that

7: Select , which is adjacent to . A tie can
be broken arbitrarily.

8: Set and .
9: end for

10: For each node , place a sink very on each node .
If , place a sink very near to each node such
that can be connected to all neighbors of .

Now, we prove that performance ratio of Algorithm 3.
Theorem 6.4: For any output of Algorithm 3,

- is true.
Proof: This proof is basically a variation of the idea used

to analyze the performance of GREEDY- -CENTER (see
Section IV-A) in conjunction with our problem-specific obser-
vation (see Lemma 2.2). Let -
be an optimal solution of -SPP, and be the subset
of nodes whose nearest sink is - . Also, suppose
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Fig. 7. Since ��� � � and �� � � � � �, where � � �� � � � � � � � and
� � �� � � � � � � �, there has to be at least one � that contains more than
one element in � .

is the sequence of the pairs
generated by Algorithm 3 and .

Clearly,
, for some .

Let us denote by since here is exactly the node that is
going to be selected by the greedy strategy of Algorithm 3 if we
want to place the th sink. That is, once is selected
by the algorithm, a sink will be positioned on one of the
points in that is adjacent to . Since the cost of an output
of Algorithm 3 is monotonically nonincreasing as the number
of sinks increases, we have

(6)

for any and satisfying . Note that the
nodes, , are contained in . Then, by
the Pigeonhole principle, there must exist a that
contains and for (Fig. 7). Without loss of generality,
suppose . Then, by (6), for any

- since
- , and

- .

VII. SIMULATION RESULTS

In this section, we compare the average performance of
GREEDY- -SPP with its alternative, GREEDY- -CENTER.
We prepare a 100 100 space and randomly deploy a number
of nodes. In this simulation, the number of nodes is 50, 60, 70,
80, 90, or 100. We check if the UDG induced from the nodes
is connected. If not, we dump the graph away and generate
another one until it is connected. The reason for this operation
is that if the graph consists of more than connected subgraphs
and any two subgraphs are more than 2 units distant far from
each other, the cost of both algorithms over such a graph will
be infinite since there is no way for the sinks to multihop
dominate all nodes in the UDG. In fact, such a graph instance
only prevents us from making a fair comparison between the
algorithms. In practice, in many applications of WSNs, the
number of sensor nodes is huge, and they are likely to be con-
nected or can be connected by simply deploying more nodes,
whose cost is very low. Due to the reason, lots of existing
papers for WSNs have this assumption. After all, this is why

TABLE I
AVERAGED COST COMPARISON OF THE OUTPUTS OF GREEDY-�-CENTER

AND GREEDY-�-SPP, WHERE � IS THE NUMBER OF AVAILABLE SINKS,
� IS THE MAXIMUM TRANSMISSION RANGE OF EACH NODE,

AND 	 IS THE NUMBER OF NODES. (a) � � � AND � � ��.
(b) � � � AND � � ��. (c) � � � AND � � ��.
(d) � � 	 AND � � ��. (e) � � 	 AND � � ��.

(f) � � 	 AND � � ��

this paper assumes the input graphs are connected. Once a valid
UDG is generated, we apply both GREEDY- -CENTER and
GREEDY- -SPP to find the locations of sinks, where 3
or 6. We vary the maximum transmission range of nodes to
15, 20, and 25. For each parameter setting, we execute each
algorithm over 100 different graphs and compute the average
cost of their outputs. Table I is the summary of our simulation
results. In the table, and represent the number of nodes
and the maximum transmission range, respectively.

Let us compare Table I(a)–(c). In those tables, we fix to 3
and is 15, 20, and 25, respectively. By comparing the three ta-
bles, we can observe that the cost of both algorithms is decreased
when we make the value of large. This is natural since, with
larger , the diameter of an input graph is reduced and the graph
is more connected, and thus and the whole graph can be domi-
nated more efficiently by the same number of sinks. On the other
hand, the cost of their output increases as the number of nodes
grows. This is also easy to understand since the diameter of a
graph with more nodes is expected to be larger. Most impor-
tantly, from the tables, we can see that GREEDY- -SPP outper-
forms GREEDY- -CENTER under any and , given .
The performance difference between them becomes more ap-
parent when the number of nodes and the value of are smaller.
This can be also verified by the improvement ratio, which is
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cost of - - cost of - -
cost of - - %

shown at the top of the page. Therefore, we can conclude that
in a sparse graph, GREEDY- -SPP works especially better than
GREEDY- -CENTER.

Now, let us look at Table I(d)–(f). In those tables, we fix
to 6 and is set to 15, 20, and 25, respectively. In general,
we can see the trend that we observed from the first three
tables still exists. Interestingly, the performance gap between
GREEDY- -CENTER and GREEDY- -SPP becomes small
after is set to 6. This is because once a certain number of
sinks are used to cover the given graph, they can reduce the
cost of an output sufficiently, and the last few sinks can reduce
the cost of the output less significantly than the first several
sinks. For example, in Table I(a), the average cost of the outputs
by GREEDY- -CENTER is 4.97 when and .
However, as we can see from Table I(d), the average cost of
the outputs by GREEDY- -CENTER is 3.20 when and

. That is, by adding three more sinks, we only reduced
the cost by .

In conclusion, our simulation results indicate that
GREEDY- -SPP outperforms GREEDY- -CENTER on av-
erage. In the earlier section, we showed GREEDY- -CENTER
is a 26-approximation algorithm for -SPP, and this approxi-
mation ratio cannot be improved better than 5. We also showed
that the approximation ratio of GREEDY- -SPP is 3. As a
result, we can conclude that GREEDY- -SPP outperforms
GREEDY- -CENTER completely.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we provide a basic framework to best construct
WSNs for time-sensitive applications with a limited number of
sinks. We recognized that: 1) for those applications, it is impor-
tant to ensure that the maximum node to sink message latency is
bounded; and 2) it is better to make the bound smaller to improve
the performance of those real-time systems. We also realized
that we can design such a WSN by employing multiple sinks
and make it more effective by carefully selecting the locations
of the sinks. Motivated by our observations, we introduce the

-Sink Placement Problem ( -SPP), whose goal is minimizing
the maximum hop distance between each node and its nearest
sink. We showed that this problem is APX-complete and proved
that an existing approximation algorithm for the metric -center
problem is still an approximation of -SPP. Then, we introduced
a new greedy algorithm for -SPP and showed its approxima-
tion ratio is very near to the best achievable, 2. In simulations,
we showed our new algorithm works better than its competitor
on average.

In Section IV, we showed the approximation ratio of
GREEDY- -CENTER is 26 for -SPP, but cannot be better
than 5. Our result gives a nonnegligible gap between the lower
bound and upper bound of the worst-case performance ratio
of GREEDY- -CENTER for -SPP, and we are interested

in further closing this gap. We also believe that while our
algorithm is useful, it can be improved in many aspects. First,
we assumed homogeneous WSNs and used UDGs to model
the networks. However, in reality, it is necessary to assume that
WSNs are nonhomogeneous. In this case, this problem should
be considered in a disk graph model. Second, we assume the
topology of the input WSNs is flat and used UDGs to model
the graphs. However, this may not be true in some occasions.
Therefore, studying this problem in 3D-WSN could be a very
interesting research direction.
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