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Abstract In the minimum weighted dominating set problem (MWDS), we are given
a unit disk graph with non-negative weight on each vertex. The MWDS seeks a subset
of the vertices of the graph with minimum total weight such that each vertex of the
graph is either in the subset or adjacent to some nodes in the subset. A weight func-
tion is called smooth, if the ratio of the weights of any two adjacent nodes is upper
bounded by a constant. MWDS is known to be NP-hard. In this paper, we give the first
polynomial time approximation scheme (PTAS) for MWDS with smooth weights on
unit disk graphs, which achieves a (1 + ε)-approximation for MWDS, for any ε > 0.

Keywords Dominating set · Maximal independent set · Polynomial time
approximation scheme · Unit disk graphs

1 Introduction

Wireless ad hoc sensor networks is a recently emerged advanced technology with a lot
of applications in many fields, such as surveillance of battlefield, search and rescue,
disaster detection, and etc. Unlike wired networks, no physical infrastructure exists in
wireless ad hoc sensor networks. It is usually beneficial to choose a virtual backbone
formed by nodes in a connected dominating set for efficient routing, broadcasting and
connectivity management in wireless ad hoc networks (Bharghavan and Das 1997).

A wireless ad hoc network is usually modelled as a unit disk graph (UDG), in
which the sensor nodes are assumed to lie on the Euclidean plane, and there is an
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edge between two nodes iff their Euclidean distance is no more than one. Given a
UDG G = (V ,E), a dominating set (DS) of G is a subset D of V such that each
vertex of G is either in D or adjacent to some node in D. The minimum dominating
set (MDS) problem seeks to find a dominating set of a graph G with the smallest
cardinality.

Due to its wide applications in wireless ad hoc sensor networks and many other
areas, MDS has been studied extensively in recent years. For MDS in general graphs,
it was proved in Guha and Khuller (1998) that for any 0 < ρ < 1, there is no poly-
nomial time ρ lnn-approximation unless NP ⊆ DTIME(nO(lnn)) (n is the number of
vertices); also, a greedy (ln� + 3)-approximation was given, where � is the maxi-
mum degree of the graph. When restricted to UDGs, the MDS problem is still NP-
hard (Clark et al. 1990). A distributed constant-approximation for MDS in UDGs was
given in Wan et al. (2002). Polynomial time approximation schemes (PTASs) were
given in Ambühl and Erlebach (2006), Gfeller and Vicari (2007) and Nieberg and
Hurink (2006).

In practice, it is natural to assume that the vertices of the graph have some posi-
tive weights. In the context of wireless ad-hoc networks, these weights usually reflect
residual energy or capabilities of a node for a specific task. So the minimum weighted
dominating set (MWDS) problem is considered by several authors. Ambühl and Er-
lebach (2006) is the first to design a constant factor approximation algorithm for
MWDS on UDGs. Later, Huang et al. (2008) and Dai and Yu (2009) improved the ap-
proximation ratio significantly. However, it is still an open question whether MWDS
has a PTAS on UDGs.

In this paper, we will give the first PTAS for MWDS with smooth weights (which
will be specified later, see Sect. 2) on UDGs. It should be noted that a constant fac-
tor approximation algorithm is implied in Wang et al. (2005) previously under the
same conditions. The assumption of the smoothness of the weights is reasonable in
practice, since in many applications such as wireless ad hoc networks, the weights of
neighboring nodes do not vary significantly (Wang et al. 2005).

The rest of the paper is organized as follows. In Sect. 2, we give some preliminaries
needed in the paper. In Sect. 3, we present the PTAS algorithm. The proof of the
correctness of the algorithm is given in Sect. 4.

2 Preliminaries

In this section, we introduce some notions and notations that are needed in the rest of
the paper.

Throughout, we denote the 1-hop closed neighborhood of a node v by

N(v) = {u ∈ V |u is adjacent with v} ∪ {v}.
For a subset S ⊂ V , N(S) = ⋃

v∈S N(v). And the r-hop closed neighborhood of
v is defined recursively as Nr(v) = N(Nr−1(v)). In particular, N1(v) = N(v) and
N0(v) = {v}.

Let S ⊂ V be a subset of vertices in G. In the following, we use G[S] to denote
the subgraph induced by S. In case of a weighted graph, we define the weight of a
subset S by w(S) := ∑

v∈S w(v).
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Two vertices of a graph are called independent if they are not adjacent to one an-
other. A subset I ⊂ V is called independent if all vertices are not connected. A max-
imal independent (MIS) set is an independent set that cannot be extended by the
addition of any other vertex from the graph without violating the independence prop-
erty. We will denote by MIS(S) for the MIS of the graph G[S] induced by a subset
S ⊂ V . It is easy to verify that an MIS of G is also a dominating set of G. In a UDG,
we have |MIS(Nr(v))| ≤ (2r + 1)2. Since if we draw a disk with radius centered at
v and draw disks with radius 1/2 centered at each nodes of the maximal independent
set, then all small disks are pairwise disjoint and contained in the bigger disk. It fol-

lows that |MIS(Nr(v))| ≤ π(r+1/2)2

π(1/2)2 = (2r + 1)2. This fact will be used frequently in
the sequel.

Furthermore, we give the following definitions.

Definition 2.1 (Minimum weighted dominating set problem, MWDS) Given a
weighted graph G = (V ,E) with each vertex v having a non-negative weight w(v).
Find a dominating set D of G such that the total weight

∑
v∈D w(v) is minimized.

Definition 2.2 Given a weighted graph G = (V ,E) with each vertex v having a non-
negative weight w(v). The wight function w : V → R+ is called smooth if there
exists a constant C ≥ 1 such that max(uv)∈E

w(u)
w(v)

≤ C.

A polynomial-time approximation scheme (PTAS) is an algorithm which, in ad-
dition to an input instance, requires a parameter ε > 0, which then returns a solution
with a relative error of at most 1 + ε with respect to an optimal solution. The run-
ning time of such algorithms is allowed to depend on ε but should be polynomial
in n := |V | for fixed ε > 0. For example, a PTAS for the MDS problem returns a
dominating set of cardinality at most (1 + ε) times the cardinality of a minimum
cardinality dominating set.

3 The algorithm

Our idea follows that of Nieberg and Hurink (2006), in which they proposed a PTAS
to compute an MDS in a UDG. To describe the main idea, we need the following

Definition 3.1 A collection of subsets {S1, . . . , Sk} is defined to be a 2-separated
partition of G if the distance dist(Si, Sj ) > 2 holds for any i 	= j .

Denote by Dopt(S) the set of nodes in V (G) with the minimum cardinality that
dominates S. Note that Dopt(S) is computed w.r.t. entire underlying graph G and
is not restricted to lie in S, however, it is always true that Dopt(S) ⊆ N(S). Hence,
for a 2-separated partition {S1, . . . , Sk} of G, Dopt(S1),Dopt(S2), . . . ,Dopt(Sk) are
disjoint. As Dopt(V ) ∩ N(Si) is a dominating set of Si and Dopt(Si) is the set with
minimum cardinality that dominates Si , we have |Dopt(Si)| ≤ |Dopt(V )∩N(Si)| and
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hence,

k∑

i=1

|Dopt(Si)| ≤
k∑

i=1

|Dopt(V ) ∩ N(Si)| = |Dopt(V )|.

Note that
⋃k

i=1 Dopt(Si) is not necessarily a dominating set of G. To get a domi-
nating set of G, we enlarge the Si ’s to Ti ’s such that

(1) Si ⊆ Ti ;
(2) |Ti | ≤ (1 + ε)|Si |;
(3)

⋃k
i=1 Ti is a dominating set of V (G).

Then
⋃k

i=1 Ti is a (1 + ε)-approximation of V (G). To compute {S1, . . . , Sk} and
{T1, . . . , Tk}, pick an arbitrary node v1, find the minimum non-negative integer r1

satisfying

|Dopt((N
r1+2(v1))) ≤ (1 + ε)|Dopt((N

r1(v1)))|. (1)

Set S1 = Nr1(v1) and T1 = Nr1+2(v1), repeat this procedure in the remaining graph
G[V \ T1], until no vertex left. Denote each node selected in the algorithm by vi

which is referred to as core nodes. Denote Si = Nri (vi) and Ti = Nri+2(vi).
The key point of the above method lies in the fact that given an ε > 0, there always

exists a uniform constant r(ε) = O( 1
ε

ln 1
ε
) for all core node vi which is dependent

only on ε, such that |Dopt(Ti)| ≤ (1+ε)|Dopt(Si)| and ri ≤ r(ε). Thus, |Dopt(Ti)| can

be computed exactly locally by enumeration with time complexity nO(r(ε)2) (which
is a polynomial in n whenever ε is given), since |Dopt(Ti)| ≤ |MIS(Ti)| = O(r(ε)2).

In the rest of this section, we give a PTAS for MWDS with smooth weights in
unit disk graphs. The main line of the algorithms follows that of Nieberg and Hurink
(2006). However, the algorithm in Nieberg and Hurink (2006) cannot be directly ap-
plied for the MWDS problem, this is because there may not exist a uniform constant
r(ε) due to the fact that the ratio of the maximum weight to the minimum weight of
two nodes in the graph G may have no upper bounds (even if the weight function
is smooth). To over come this difficulty, the key improvement of our algorithm over
(Nieberg and Hurink 2006) is that we select the core nodes carefully at each iteration
(in Nieberg and Hurink (2006), the core nodes are chosen with some arbitrariness),
i.e., at each time, we selected the core node with the largest weight among all nodes
in the remaining graphs. With this significant modification, we are able to show that
we can get a PTAS for MWDS.

In the following algorithm, Dopt(N
r(u)) denotes the dominating set of Nr(u) (as

before, Dopt(N
r(u)) is computed w.r.t. the whole underlying graph) with minimum

total weights, where u is a core node, and w(.) is used to denote total weights of the
corresponding dominating set. We emphasize that the notation Nr(u) in the algorithm
is referred to those nodes within r-hop away from u in G[U ] (not in G), where U is
used to record nodes waiting to be dealt with, and W is used to record the core nodes
obtained.
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Algorithm 1

Input: A unit disk graph G = (V ,E) with weight function w : V → R+, and para-
meter ε > 0.

1: U ← V (G);W ← ∅.
2: while U 	= ∅ do
3: Choose a node u ∈ U with the maximum weight; find the smallest non-

negative integer ru satisfying w(Dopt(N
ru+2(u))) ≤ (1 + ε)w(Dopt(N

ru(u))).
Set U ← U \ Nru+2(u), W ← W ∪ {u}.

/* w(Dopt(N
ru(u))) is computed by exhausted search*/

4: end while
5: Output D = ⋃

u∈W Dopt(N
ru+2(u)).

4 Proof of correctness

In this section, we show the correctness of Algorithm 1. In line 3, a dominating
Dopt(N

ru(u)) with minimum total weight is computed for each cluster Nru(u). This
was done by an exhausted search. The following lemma guarantees that this can al-
ways be done in polynomial time.

Lemma 4.1 Let G be a unit disk graph with smooth weights. Then, for any real num-
ber ε > 0, there exists a constant r(ε) which depends only on ε, but is independent of
the topology of G, such that w(Dopt(N

r+2(v))) ≤ (1 + ε)w(Dopt(N
r(v))) for each

v ∈ W whenever r ≤ r(ε), where the set of core nodes W is chosen as in Algorithm 1.

Proof We prove the lemma by contradiction. If not, then there exists an ε0 > 0 and a
node v0 ∈ W such that

w(Dopt(N
r+2(v0))) > (1 + ε0)w(Dopt(N

r(v0))) for r = 0,1,2, . . . .

According to the rule of selecting core nodes in Algorithm 1, v0 is the nodes with
the maximum weight in the remaining graph induced by U . Note that the core node
v0 dominates v0 and all its neighbors. Thus, we have

w(Dopt(N
0(v0))) = min{w(v)|v ∈ N(v0)} ≥ w(v0)

C
.

The inequality follows from the smoothness assumption of the weight function. Also,
it is clear that wopt(N

1(v0)) ≥ wopt(N
0(v0)) ≥ w(v0)

C
.

If r is even, then we have

w(Dopt(N
r+2(v0)))

> (1 + ε0)w(Dopt(N
r(v0))) > · · · > (1 + ε0)

1+r/2w(Dopt(N
0(v0))).
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If r is odd, we have

w(Dopt(N
r+2(v0)))

> (1 + ε0)w(Dopt(N
r(v0))) > · · · > (1 + ε0)

(1+r)/2w(Dopt(N
1(v0))).

Note that MIS(Nr+2(v0)) is a dominating set of Nr+2(v0) and Dopt(N
r+2(v0)) is

the dominating set of Nr+2(v0) with minimum total weights. Therefore,

w(Dopt(N
r+2(v0))) ≤ w(MIS(Nr+2(v0)))

≤ w(v0)|MIS(Nr+2(v0))| ≤ w(v0)(2r + 1)2.

If r is even, we obtain

(1 + ε0)
1+r/2 w(v0)

C
≤ (1 + ε0)

1+r/2w(Dopt(N
0(v0))) ≤ w(v0)(2r + 1)2.

It follows that

(1 + ε0)
1+r/2 ≤ C(2r + 1)2.

Similarly, if r is odd, we obtain (1 + ε0)
(1+r)/2 ≤ C(2r + 1)2. In either case, we

obtain an inequality with its left hand side being exponential in r while its right hand
side being a polynomial in r . Thus, if r is sufficient large, both inequalities cannot be
true; a contradiction. �

Lemma 4.2 The constant ru in Lemma 4.1 is upper bounded by r(ε) = O( 1
ε

ln 1
ε
).

Proof Consider the inequality (1 + ε)x ≤ 4Cx2, where ε > 0 is fixed. Let x0 =
2 1

ε
ln 1

ε
. We show there exists an ε0, such that (1+ε)x0 ≤ 4Cx2

0 ≤ C(2x0 +1)2 when-
ever 0 < ε < ε0.

Taking logarithm on both sides and using the fact ln(1 + ε) ≤ ε for any ε ≥ 0, we
obtain that x0ε ≤ ln(4C) + 2 lnx0 implies (1 + ε)x0 ≤ 4Cx0

2. The former is equiva-
lent to

2 ln
1

ε
≤ ln(4C) + 2 ln 2 + 2 ln

1

ε
+ 2 ln ln

1

ε
.

Clearly, there exists an ε0 such that the above inequality holds whenever 0 < ε < ε0.
This shows that when ε is sufficiently small, (1 + ε)x0 ≤ C(2x0 + 1)2 holds and,
hence r(ε) ≤ x0 = 2 1

ε
ln 1

ε
. �

Lemma 4.3 The time complexity of Algorithm 1 is nO(C1/ε ln(1/ε)1/ε2 ln2(1/ε)), where n

is the order of the graph.

Proof The time complexity of Algorithm 1 is dominated by enumerating the local
optimal solution in Nru+2(u) with the largest radius ru. Denote by wmin the minimum
weight among all weights for nodes in Nru+2(u). Then we have

wmin|Dopt(N
ru+2(u))| ≤ w(Dopt(N

ru+2(u))) ≤ w(u)|MIS(Nru+2(u))|
≤ w(u)(2ru + 1)2.
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Furthermore, by the smoothness of the weight function, we have w(u)
wmin

≤ Cru .

It follows that |Dopt(N
ru+2(u))| ≤ Cru(2ru + 1)2. Therefore, if we enumerate

all possible cases to compute Dopt(N
ru+2(u)), the time complexity is at most

nO(C1/ε ln(1/ε)1/ε2 ln2(1/ε)). �

Lemma 4.4 D = ⋃
u∈W Dopt(N

r+2(u)) obtained in Algorithm 1 is a dominating set
for graph G.

Proof By Algorithm 1, V (G) = ⋃
u∈W Nr+2(u). Thus, for each v ∈ V , there exists

some Nr+2(u) such that v ∈ Nr+2(u). Clearly, v is dominated by Dopt(N
r+2(u)). �

Theorem 4.5 Algorithm 1 is a PTAS for the MWDS with smooth weights on unit disk
graphs.

Proof Let Si = Nri (vi), Ti = Nri+2(vi) (i = 1,2, . . . , k) be the sets of nodes con-
structed in Algorithm 1. Clearly {S1, S2, . . . , Sk} is a 2-separated collection of V . Let
Dopt(V ) be the optimal solution to MWDS. Then Dopt(V ) ∩ N(Si) dominates Si .
By the definition, Dopt(Si) is the set of nodes with minimum total weights that
dominates Si . Thus, we obtain w(Dopt(Si)) ≤ w(Dopt(V ) ∩ N(Si)). By Lemma 4.1,
w(Dopt(Ti)) ≤ (1 + ε)w(Dopt(Si)). It follows that

w

(
k⋃

i=1

Dopt(Ti)

)

≤
k∑

i=1

w(Dopt(Ti)) ≤ (1 + ε)

k∑

i=1

w(Dopt(Si))

≤ (1 + ε)w(Dopt(V )).

Combined with Lemmas 4.3 and 4.4, we get the conclusion that
⋃k

i=1 Dopt(Ti) is a
(1 + ε)-approximation of Dopt(V ). This completes the proof. �
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