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Abstract—Directional antennas can divide the transmission range into several sectors. Thus, through switching off sectors in
unnecessary directions in wireless networks, we can save bandwidth and energy consumption. In this paper, we will study a directional
virtual backbone (VB) in the network where directional antennas are used. When constructing a VB, we will take routing and
broadcasting into account since they are two common operations in wireless networks. Hence, we will study a VB with guaranteed
routing costs, named 𝛼 M inimum rOuting Cost Directional VB (𝛼-MOC-DVB). Besides the properties of regular VBs, 𝛼-MOC-DVB also
has a special constraint — for any pair of nodes, there exists at least one path all intermediate directions on which must belong to
𝛼-MOC-DVB and the number of intermediate directions on the path is smaller than 𝛼 times that on the shortest path. We prove that
construction of a minimum 𝛼-MOC-DVB is an NP-hard problem in a general directed graph. A heuristic algorithm is proposed and
theoretical analysis is also discussed in the paper. Extensive simulations demonstrate that our 𝛼-MOC-DVB is much more efficient in
the sense of VB size and routing costs compared to other VBs.
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1 INTRODUCTION

Wireless network has always been a hot topic in research
community since it has a variety of military and civil
applications such as environmental detections, health
applications, disaster recoveries, etc. Due to its flexible
deployment and mobile connectivity, it is believed that
wireless network must act a vital part in the next gen-
eration network. However, different from the wired net-
work, there are no underlying physical infrastructures in
wireless networks. In order to enable data transfers in
wireless network, all wireless nodes need to frequently
flood control messages causing “broadcast storm prob-
lem” [1]. Thus, inspired by the physical backbone in
wired networks, it is believed that a Virtual Backbone
(VB) [2] in the wireless network will help achieve effi-
cient broadcasting.

In most virtual backbone research, Connected
Dominating Set (CDS) is selected to be a virtual
backbone in wireless networks. If a network is modeled
as 𝐺 = (𝑉,𝐸), where 𝑉 represents the node set in the
network and 𝐸 represents the link set in the network,
then CDS is a subset 𝑆 of 𝑉 satisfying the following
two requirements: 1). Any node outside 𝑆 has at least
one edge incident on a node in 𝑆. 2). 𝑆 can induce a
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connected subgraph in 𝐺.
Due to the characteristics of CDS, forwardings only

happen on nodes inside a CDS of a wireless network.
On one hand, if the number of nodes inside a CDS is
small, then the number of nodes involved in broadcast-
ing will also be smaller. Correspondingly, redundancy
and interference will be reduced. Hence, efficient CDS-
based broadcasting is achieved. On the other hand, it is
easier to maintain a CDS with smaller size. Routing path
searching time and routing table size will be reduced too.
Thus, most CDS researches focus on how to reduce the
number of nodes selected to a CDS.

However, there are two drawbacks of prior CDS re-
searches. The first one is the forwardings in unnecessary
directions. If we divide the transmission range into
several sectors, then some sectors of the selected nodes
may have no receivers. As a result, a rather small portion
of the transmission power is actually intercepted by
the intended receivers. In this paper, we assume that
every node in the network shares the same transmis-
sion radius. Transmission range is divided into non-
overlapping uniform sectors. The forwarding energy
cost of each antenna is the same because of the same
radius and angle. Meanwhile, nodes can only receive
the messages from the directions where they are in.
The forwardings in those sectors having no receivers
will waste energy and introduce more interferences to
the network. In Fig. 1, the transmission range of each
node is divided into four uniform sectors. If one node
forwards a packet in two directions, then the energy cost
will be twice as the case that the node forwards the
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Fig. 1. Comparison between CDS and 𝛼-MOC-DVB

packet in only one direction. The 𝑖th direction of node
𝑢 is denoted as 𝑢(𝑖). In Fig. 1 (a), 𝐵, 𝐶, 𝐷, 𝐸, and 𝐽
construct a minimum CDS, where 20 sectors are selected.
Actually, since there are no receivers in 𝐵(4), 𝐶(1), 𝐶(2),
𝐷(1), 𝐷(4), 𝐸(3), and 𝐸(4), power spreading in these
directions, where no intended receivers are, cannot make
efficient use of power and even worse, collisions may
happen in these redundant directions.

The second drawback is routing cost increase, that is,
routing cost through CDS may increase a lot compared to
the minimum routing cost in the network. Because CDS
is a node subset 𝑆 of a network, for any pair of nodes
𝑢, 𝑣 /∈ 𝑆, there may not exist a shortest path between 𝑢, 𝑣
all of whose intermediate nodes belong to 𝑆. In CDS-
based routing, a detour between 𝑢 and 𝑣 will be used
and all intermediate nodes on this detour should belong
to the CDS. Routing cost on one path can be calculated
by the hop count on the path (a.k.a the length of the
path) since every node has the same transmission range.
More intermediate nodes on a path means more energy
consumption on this path and lower packets’ delivery
ratio [3]. Also in Fig. 1 (a), there exists a bidirectional
shortest path between 𝐴 and 𝐸, denoted by 𝑝(𝐴−𝐸) =
{𝐴−𝐹 −𝐸} which means 𝐴’s messages can arrive 𝐸 by
nodes on the path 𝑝 except 𝐴 and 𝐸. There are only
2 hops on 𝑝(𝐴 − 𝐸). However, a detour through the
minimum CDS should be 𝑝𝑆(𝐴−𝐸) = {𝐴−𝐵−𝐶−𝐷−𝐸}
with four hops twice that on the shortest path 𝑝(𝐴−𝐸).

From the above discussions, we can study how to
achieve efficient VB-based routing from two aspects. The
first one is to save energy in redundant directions. The
second one is to consider routing cost constraint during
VB construction process.

To avoid energy cost in unnecessary directions, [4]
proposed a Directional CDS (DCDS) in a network using
directional antennas. Instead of focusing on the node
subset selection in regular CDS construction, DCDS
focuses on selecting the sectors switched on forming
a DCDS. Unnecessary directions will not be selected
to DCDS. In a way, DCDS achieves energy efficiency
by saving energy in unnecessary sectors. However, the
routing path length is ignored in DCDS. Thus, in this

paper, we will take both directional antennas and routing
path length into CDS construction.

In [3], diameter is defined as the longest length among
all shortest paths in the network. To better evaluate the
quality of a CDS, diameter was used as an additional
metric besides of CDS size. If the diameter of the induced
subgraph of a CDS is small, then the maximum routing
path through the CDS will be small too. Hence, such a
CDS is regarded as an efficient CDS for routing. Later
on, Kim et al. [5] proposed another concept Average
Backbone Path Length (ABPL). ABPL denotes the av-
erage routing path length in a graph. In [5], ABPL is
used to evaluate the efficiency of a CDS. Recently, [6]
proposed the concept of MOC-CDS, where shortest path
is considered. However, we can find that the constraint
is so strict that the CDS size will be increased greatly.

Therefore, we propose another VB (𝛼 Minimum
rOuting Cost Directional VB 𝛼-MOC-DVB) to realize effi-
cient broadcasting and routing, since the two operations
are very common in wireless networks. The forwarding
and reception model of directional antenna are direc-
tional forwarding and omni-reception, respectively. 𝛼-
MOC-DVB is defined as a subset of directions in the
graph, requiring that from any node to every other node
in the graph, there exists at least one path all of whose
intermediate directions belong to 𝛼-MOC-DVB and the
number of intermediate directions on which should be
smaller than 𝛼 times that of the shortest path. In Fig. 1
(b), 15 directions — 𝐴(1), 𝐴(4), 𝐵(1), 𝐵(2), 𝐵(3), 𝐶(3),
𝐶(4), 𝐷(2), 𝐷(3), 𝐸(1), 𝐸(2), 𝐹 (2), 𝐹 (4), 𝐽(2), and 𝐽(4),
construct a minimum 𝛼-MOC-DVB, where 𝛼 = 1. From
the example in Fig. 1 (b), not only the sectors where
no receivers are (like 𝐶1) but also some sectors having
receivers (like 𝐽(1)) are switched off. Meanwhile, 𝐵(1),
𝐵(2), 𝐵(3), 𝐶(3), 𝐶(4), 𝐷(2), 𝐷(3), 𝐸(1), 𝐸(2), 𝐽(2), and
𝐽(4) construct a minimum 𝛼-MOC-DVB, where 𝛼 = 3.

Our contributions in this paper are as follows:
1) A VB under routing cost constraint is proposed to

achieve efficient VB-based routing and broadcast-
ing, denoted as 𝛼-MOC-DVB. Different from prior
VB construction, 𝛼-MOC-DVB focuses on selecting
a direction subset with routing cost constraint.

2) We prove that construction of a minimum 𝛼-MOC-
DVB is NP-hard in a general directed graph.

3) It is proved that the performance ratio of 𝛼-MOC-
DVB has an unreachable lower bound of 𝜌 ln 𝛿𝐷,
unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)), where 𝜌 is an
arbitrary nonnegative number smaller than 1 and
𝛿𝐷 is the maximum direction degree in a graph.

4) We propose a distributed and approximation algo-
rithm in this paper. We also prove that the size
of the selected 𝛼-MOC-DVB is within (1 + ln𝐾 +
2 ln 𝛿𝐷) ∗ 𝑜𝑝𝑡, where 𝑜𝑝𝑡 is the size of the minimum
𝛼-MOC-DVB, 𝐾 represents the number of uniform
directions deployed on each node and 𝛼 = 1.

The rest of the paper will be organized as follows: in
Section 2, we will recall the previous literatures on VB.
The communication model and the formal definition of
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𝛼-MOC-DVB are given in Section 3. To simplify 𝛼-MOC-
DVB, an equivalent problem (named 𝛼-2hop-DVB) to 𝛼-
MOC-DVB will be introduced. It is proved that 𝛼-MOC-
DVB is NP-hard. The corresponding heuristic algorithm
is proposed in Section 4. The theoretical analysis is in
Section 5. We will do thorough simulations in Section 6
to demonstrate the efficiency of 𝛼-MOC-DVB in broad-
casting and routing. Finally, the paper will be concluded
in Section 7.

2 RELATED WORK

In wireless networks, there are several familiar models
used in previous literatures — general graph [6], Unit
Disk Graph (UDG), Disk Graph (DG) [7] and Quasi
Unit Disk Graph (QUDG). In [8], [9], they model the
network as a QUDG, where obstacles [10] exist, no di-
rectional antennas are used and every node has the same
transmission range. In this paper, we exploit directional
antennas in the networks while keeping other two as-
sumptions — obstacle existence and same transmission
range. Hence, it is reasonable to model the network as a
directed general graph in this paper.

Virtual Backbone (VB) is a fundamental technique
in wireless networks. Existing studies on VB construc-
tion mainly focus on Connected Dominating Set (CDS)
construction. Previous literatures on this topic focus on
reducing the size of CDS. If the size of CDS is small,
then the routing cost of CDS-based broadcasting will
be small too because a few nodes in the network will
be devoted to forwarding alleviating the the congestion
in the network. From the applications of CDS, size
cannot be the only issue we need to solve. However,
when CDS size is too small, routing through CDS will
detour through the nodes in CDS that excludes many
intermediate nodes on shortest paths. As a result, routing
costs will be increased.

There are two main categories of VB — one is VB
without directional antennas and the other one is VB
with directional antennas (DVB).

2.1 Virtual Backbone
As a fundamental issue in wireless networks, VB can
always attract attention from the research community.
Most existing works on VB are CDS constructions. In
[11], a minimum CDS is proved NP-hard in a general
graph. Later on in [12], Lichtenstein proved that a min-
imum CDS is NP-hard even in a UDG.

There is a way to classify previous literatures on CDS
based on the construction process. The first one is 2-stage
and the second one is 1-stage.

We can further classify 2-stage literatures into two sub-
types [13]. The first one is pruning based CDS construc-
tion. The other one is a Dominating Set (DS) based CDS
construction. In the first subtype, a CDS is constructed
firstly with more redundant nodes in the first stage. The
task of the second stage is to remove the redundant
nodes selected in the previous stage as many as possible.

The typical algorithm, belonging to this subtype, is in
[14]. They proved that the approximation ratio of their
algorithm is 𝑂(𝑛), where 𝑛 is the number of nodes in
the network. Contrarily, in the second subtype, a DS
is constructed firstly and more nodes will be added to
make a CDS. In [15], the authors proposed an algorithm
belonging to the second subtype and the performance
ratio of the algorithm is 𝐻(𝛿) + 2 where 𝐻 is harmonic
function and 𝛿 is the maximum node degree in the
network. A leader algorithm of the second subtype is
proposed by Butenko et al. [16]. The size of the selected
CDS is smaller than 8∣𝑜𝑝𝑡∣ + 1, where 𝑜𝑝𝑡 is the size
of a minimum CDS. Actually, a Maximum Independent
Set (MIS) [17] in a graph is also a DS. Hence, MIS and
Steiner Tree [18] are used in [19] achieving a CDS with
size smaller than 3.8∣𝑜𝑝𝑡∣+ 1.2.

Different from the 2-stage algorithm, 1-stage algorithm
is to find a CDS directly without the stage of DS or
redundant CDS. Guha et al. also proposed a 1-stage al-
gorithm yielding approximation ratio of 2𝐻(𝛿)+2. Later,
Ruan et al. [20] made a modification of the selection
standard of DS in [15]. Thus, the 2-stage algorithm in [15]
is reduced to a 1-stage algorithm with approximation
ratio of 3 + ln 𝛿.

2.2 Directional Virtual Backbone

As we all know, the application of directional anten-
nas can save energy and reduce collisions in the net-
work. Hence, some VB researches are done with direc-
tional antennas to achieve efficient VB-based routing and
broadcasting. In [4], Yang et al. propose the concept of
Directional CDS (DCDS). In Directional Virtual Backbone
(DVB), the goal is to find the directions as few as
possible to construct a VB. DCDS is proved NP-hard in
[4]. Correspondingly, a localized heuristic algorithm is
proposed in [4]. However, the time complexity in this
paper is exponential under some circumstances since
they need to compute all paths between any two nodes
to make a decision whether one direction is selected or
not in the worst case. [6], [21] study VB with guaranteed
routing costs. However, CDS size is too large. Hence,
routing costs will be increased too.

Besides routing [22] and broadcasting [23], virtual
backbone has many other applications (e.g., topology
control [24]) in wireless networks. In this paper, we
mainly focus on how to construct a VB yielding both
efficient routing and efficient broadcasting.

3 PROBLEM STATEMENT

In this section, we will introduce the directional antennas
used in this paper. The network model will be intro-
duced, where directional antennas are exploited. Then
𝛼-MOC-DVB will be introduced formally. To simplify the
problem of 𝛼-MOC-DVB, an equivalent problem 𝛼-2hop-
DVB will be studied. We will prove that 𝛼-2hop-DVB is
NP-hard in the network model used in this paper.
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3.1 Directional Antenna
The techniques used in smart antenna system are illus-
trated in [25]. In the antenna system, directional trans-
mission and reception are possible. We will introduce
the forwarding and reception strategies in the following
part, respectively.

Assume that the directional antennas are regular,
aligned and nonoverlapped. The messages can be sent
out through the selected antennas with the switched
beam technique. In this paper, we assume that in one
network, uniform directional antennas are used. Then
the transmission range of each node is divided into
several uniform sectors. In this paper, we denote the
𝑖th sector of node 𝑢 as 𝑢(𝑖). One node can only send
out messages through its sectors switched on. And one
node can only receive messages from the sectors where
it is. In Fig. 2 (a), 𝐴’s transmission range is divided into 4
sectors. And node 𝐶 is in 𝐴(4). Hence, 𝐶 can only receive
messages sent out in 𝐴(4), instead of any other sectors
of 𝐴. If 𝐴(4) is switched on, then 𝐴 can send message
to 𝐶. Otherwise, 𝐴 cannot reach 𝐶 directly without help
of other forwarders.

In directional antenna systems, two reception tech-
niques are used. One is directional reception. In this
technique, some directions are predetermined used for
reception. Nodes cannot receive messages from those
directions not predetermined. The other one is omni-
reception. In this technique, nodes can receive messages
from its neighbors in any direction. For convenience, we
will use the second reception technique in this paper.

3.2 Network Model
In this paper, we consider the existence of obstacles [10].
In wireless networks, communications are realized by
the radio wave transmissions. Obstacles can stop the
communications between any two nodes by four kinds
of influence — scattering, reflection, diffraction, and
blocking [10]. Every two nodes 𝑢 and 𝑣 can communicate
with each other when and only when three requirements
are satisfied at the same time — (a). 𝑢 and 𝑣 are in each
other’s transmission range. (b). At least one sector of 𝑢
where 𝑣 is is switched on and at least one sector of 𝑣
where 𝑢 is is switched on. (c). Neither of transmissions
from 𝑢 to 𝑣 or from 𝑣 to 𝑢 is forbidden by the obstacles.

We also assume that the transmission radius for each
node is the same. For any two nodes 𝑢 and 𝑣, if there is
a directional link from 𝑢 to 𝑣 and 𝑣 is in 𝑢(𝑖), then we
will use a directed edge 𝑢(𝑖) → 𝑣 to denote it. 𝑢(𝑖) → 𝑣
means that 𝑢 can forward the messages to 𝑣 through
its 𝑖th direction when 𝑢 receive messages from other
nodes by the technique of omni-reception. Taking all
the situations we assume above into consideration, it is
quite reasonable to model a network as a directed graph
𝐺 = (𝑉,𝐸,𝐷), where 𝑉 is the node set in the network,
𝐸 is the directed edge set in the network, and 𝐷 is the
sector set in the network. In this paper, we assume that 𝐺
is a strongly connected directed graph. A directed graph
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Fig. 2. Network Model and Illustration of 𝛼-MOC-DVB.
(a). The network has obstacles. (b). The directed graph of
the network. (c). Illustration of 𝛼-MOC-DVB property.

is called strongly connected if there is a path from each
node in the graph to every other node.

In Fig. 2 (a), 𝐵 is in the sector 𝐴(3) and then 𝐴 must be
in at least one of 𝐵’s sectors since all sectors have same
radius. However, because of the existence of obstacle
between 𝐴 and 𝐵, the link between 𝐴 and 𝐵 is cut off.
Same thing happens on the link between 𝐵 and 𝐷. Thus,
we have the induced graph in Fig. 2 (b).

3.3 Energy Consumption Model

We assume that the transmission radius in one network
is 𝑟. The energy consumption (denoted as 𝐸𝐶𝑠) of one
forwarding in one sector 𝑠 is proportional to 𝑟 and the
angle (𝜃) of the sector. We have 𝐸𝐶𝑠 = 𝐶 ∗𝑟 ∗𝜃, where 𝐶
is a constant value [23]. The energy cost of a path is the
sum of cost of all forwardings on the path. Since 𝑟 and 𝜃
are fixed in one network, the forwarding in one sector in
the network will be fixed. Thus, the energy cost of one
path is determined by hops on the path in one network.

3.4 Problem Definition

Since 𝐺 is a strongly connected graph, then from any
node 𝑥 to every other node 𝑦, there must be at least one
directed path 𝑝(𝑥 → 𝑦) = {𝑥 → 𝑤1(𝑤2) → 𝑤2(𝑤3)... →
𝑤𝑘(𝑦) → 𝑦}, where 𝑤𝑖(𝑤𝑖+1) represents the sector of
𝑤𝑖 which 𝑤𝑖 uses to forward messages to 𝑤𝑖+1. The
shortest path from 𝑥 to 𝑦 is defined as the path having
the smallest number of intermediate directions among
all paths. 𝐻(𝑥 → 𝑦) denotes the hop count on the
shortest path from 𝑥 to 𝑦. In wireless network, longer
routing path will decrease the delivery ratio and increase
interference. To achieve efficient routing, we study 𝛼-
MOC-DVB in this paper. The formal definition of 𝛼-
MOC-DVB is given in Def. 1.

Definition 1 (𝛼-MOC-DVB). The 𝛼 Minimum rOuting
Cost Directional Virtual Backbone problem (𝛼-MOC-DVB)
is to find a direction set 𝐷𝑆𝑢𝑏 ⊆ 𝐷 in 𝐺 = (𝑉,𝐸,𝐷) such
that
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1) 𝐷𝑆𝑢𝑏 can induce a node subset 𝑉𝑆𝑢𝑏 where every node
in 𝑉𝑆𝑢𝑏 has at least one sector in 𝐷𝑆𝑢𝑏. ∀𝑥 /∈ 𝑉𝑆𝑢𝑏,
there exists a 𝑦 in 𝑉𝑆𝑢𝑏 and the sector of 𝑦 where 𝑥 is
is in 𝐷𝑆𝑢𝑏.

2) ∀ 𝑥, 𝑦 ∈ 𝑉 , if 𝐻(𝑥 → 𝑦) > 1, ∃ 𝑝(𝑥 → 𝑦), all
intermediate directions on 𝑝(𝑥 → 𝑦) belong to 𝐷𝑆𝑢𝑏

and the number of intermediate directions on 𝑝(𝑥 → 𝑦)
should be smaller than 𝛼 times that on the shortest path
from 𝑥 to 𝑦.

Actually, we do not require that 𝐷𝑆𝑢𝑏 induces a con-
nected subgraph. However, we can still deliver messages
successfully through directions in 𝐷𝑆𝑢𝑏 if the messages
are initiated by the source node in omni-directions. In
Fig. 2 (c), only through the directions in VB, 𝐴 cannot
reach 𝐷. Hence, the selected directions cannot induce
a connected subgraph. However, messages can still be
delivered successfully if 𝐴 initiates messages in omni-
directions. 𝑝(𝐴 → 𝐷) = {𝐴 → 𝐹 (4) → 𝐸(4) → 𝐷} while
𝑝(𝐷 → 𝐴) = {𝐷 → 𝐶(2) → 𝐵(2) → 𝐴}, where both 𝐴
and 𝐷 initiate messages in omni-directions.

In 𝛼-MOC-DVB, we do not need to consider the
situation of the pair of nodes which can communicate
with each other directly in 𝐺 without other nodes’ helps.
For the special case of a complete graph, one node will
be selected arbitrarily, and switch on its sectors having
receivers.

To simplify the construction of an 𝛼-MOC-DVB, we
find an equivalent VB to 𝛼-MOC-DVB, named 𝛼-2hop-
DVB formally defined in Def. 2. We prove the equiva-
lence of the two types of VB in Lemma 1.

Definition 2 (𝛼-2hop-DVB). The 𝛼 2hop Directional Vir-
tual Backbone problem (𝛼-2hop-DVB) is to find a direction
set 𝐷′

𝑆𝑢𝑏 ⊆ 𝐷 in 𝐺 = (𝑉,𝐸,𝐷) such that
1) 𝐷′

𝑆𝑢𝑏 can induce a node subset 𝑉 ′
𝑆𝑢𝑏 where every node

in 𝑉 ′
𝑆𝑢𝑏 has at least one sector in 𝐷′

𝑆𝑢𝑏. ∀𝑥 /∈ 𝑉 ′
𝑆𝑢𝑏,

there exists a 𝑦 in 𝑉 ′
𝑆𝑢𝑏 and the sector of 𝑦 where 𝑥 is

is in 𝐷′
𝑆𝑢𝑏.

2) ∀ 𝑥, 𝑦 ∈ 𝑉 , if 𝐻(𝑥 → 𝑦) = 2, ∃ 𝑝(𝑥 → 𝑦), all
intermediate directions on 𝑝(𝑥 → 𝑦) belong to 𝐷′

𝑆𝑢𝑏

and the number of intermediate directions on 𝑝(𝑥 → 𝑦)
should be smaller than 𝛼.

Lemma 1. 𝛼-MOC-DVB and 𝛼-2hop-DVB are equivalent to
each other.

Proof: We will prove this lemma from two directions
— an 𝛼-MOC-DVB is an 𝛼-2hop-DVB (“⇒”) and an 𝛼-
2hop-DVB is also an 𝛼-MOC-DVB (“⇐”).

(“⇒”) If a direction set 𝐷𝑖𝑟𝑆 is an 𝛼-MOC-DVB, then
it must satisfy the dominating attribute. Thus, 𝐷𝑖𝑟𝑆
also meets the first constraint in 𝛼-2hop-DVB. Moreover,
𝐷𝑖𝑟𝑆 also guarantees the number of intermediate di-
rections on the routing path from any node to another
node with distance bigger than 1. Hence, 𝐷𝑖𝑟𝑆 must
guarantees the intermediator number on the path from
any node to another node with two hops away. This
satisfies the second constraint in 𝛼-2hop-DVB. Thus,
𝐷𝑖𝑟𝑆 is also an 𝛼-2hop-DVB.
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Fig. 3. Equivalence between MOC-DVB and 2hop-DVB

(“⇐”) If a direction set 𝐷𝑖𝑟𝑆 is an 𝛼-2hop-DVB, then
it must satisfy the first constraint (dominating attribute)
in 𝛼-MOC-DVB. We also need to prove that 𝐷𝑖𝑟𝑆 also
satisfies the second constraint in 𝛼-MOC-DVB.

We select any two nodes (𝑥 and 𝑦 in Fig. 3) arbitrarily
from the graph having 𝐻(𝑥 → 𝑦) = 𝑘 > 1, there must
exist a shortest path from 𝑥 to 𝑦 — 𝑝(𝑥 → 𝑦) = {𝑥 →
𝑤1(𝑤2) → 𝑤2(𝑤3) → ... → 𝑤𝑘(𝑦) → 𝑦}. We can tell
that 𝐻(𝑤𝑘−1 → 𝑦) = 2. Hence, we can find at most
𝛼 directions from 𝐷𝑖𝑟𝑆 to replace the direction 𝑤𝑘(𝑦)
— 𝑤1,𝑘(𝑤2,𝑘), ..., 𝑤𝛽,𝑘(𝑦) of nodes 𝑤1,𝑘,..., 𝑤𝛽,𝑘 respec-
tively (𝛽 ≤ 𝛼). We can get a replacement path 𝑝𝑘(𝑥 →
𝑦) = {𝑥 → 𝑤1(𝑥) → 𝑤2(𝑤1) → ... → 𝑤𝑘−1(𝑤1,𝑘) →
𝑤1,𝑘(𝑤2,𝑘), ...,→ 𝑤𝛽,𝑘(𝑦) → 𝑦}. Continue, we can tell
𝐻(𝑤𝑘−2 → 𝑤1,𝑘) = 2 from 𝑝𝑘(𝑥 → 𝑦). At most 𝛼
directions can be found in 𝐷𝑖𝑟𝑆 to replace 𝑤𝑘−1. Hence,
for each intermediate direction in 𝑝(𝑥 → 𝑦), we can
find at most 𝛼 replacement directions in 𝐷𝑖𝑟𝑆. Finally,
we can get a replacement path where all intermediate
directions are in 𝐷𝑖𝑟𝑆 and the number of directions on
the replacement path is smaller than or equal to 𝛼 ∗ 𝑘.
Hence, 𝐷𝑖𝑟𝑆 also satisfies the second constraint in 𝛼-
MOC-DVB.

In sum, one direction subset 𝐷𝑖𝑟𝑆 is an 𝛼-MOC-DVB
if and only if it is an 𝛼-2hop-DVB.

From the proof of equivalence (part “⇐”), we know
that for any path in the network, we can find a re-
placement path with all directions in 𝛼-2hop-DVB except
the initiation directions. Thus, we can conclude that
if we assume that source nodes initiate messages in
all directions then we can get successful routing and
broadcasting only through directions in the DVB.

𝛼-2hop-DVB-360𝑜 is a special case where omnidirec-
tional antennas are used. 𝛼-2hop-DVB is a generalization
of 𝛼-2hop-DVB-360𝑜. Thus, if 𝛼-2hop-DVB-360𝑜 is NP-
hard, then the generalization 𝛼-2hop-DVB must be NP-
hard. Before we prove that the 𝛼-2hop-DVB-360𝑜 is NP-
hard, we first introduce 𝛼-2hop-DS which has been
prove NP-hard in [21].

Definition 3 (𝛼-2hop-DS [21]). Given a strongly connected
bi-directed graph 𝐺𝑏𝑖 = (𝑉𝑏𝑖, 𝐸𝑏𝑖) where 𝑉𝑏𝑖 is the node set
and 𝐸𝑏𝑖 is the edge set, the 𝛼-2hop Minimum rOuting Cost
Dominating Set (𝛼-2hop-DS) is a node set 𝑆𝑏𝑖 ⊆ 𝑉𝑏𝑖 such
that
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1) ∀ 𝑢𝑏𝑖 ∈ 𝑉𝑏𝑖∖𝐷𝑏𝑖, ∃ 𝑣𝑏𝑖 ∈ 𝐷𝑏𝑖, such that (𝑢𝑏𝑖, 𝑣𝑏𝑖) ∈ 𝐸𝑏𝑖.
2) ∀ 𝑢𝑏𝑖, 𝑣𝑏𝑖 ∈ 𝑉𝑏𝑖, if 𝐷𝑖𝑠𝑡(𝑢𝑏𝑖, 𝑣𝑏𝑖) = 2, then

∃ 𝑝𝐷𝑏𝑖(𝑢𝑏𝑖, 𝑣𝑏𝑖) on which all intermediate nodes belong
to 𝐷𝑏𝑖 and 𝑚𝐷(𝑢𝑏𝑖, 𝑣𝑏𝑖) ≤ 𝛼 ∗ 𝑚(𝑢𝑏𝑖, 𝑣𝑏𝑖), where
𝑚𝐷(𝑢𝑏𝑖, 𝑣𝑏𝑖) and 𝑚(𝑢𝑏𝑖, 𝑣𝑏𝑖) = 1 are the number of in-
termediate nodes on 𝑝𝐷(𝑢𝑏𝑖, 𝑣𝑏𝑖) and 𝑝𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡(𝑢𝑏𝑖, 𝑣𝑏𝑖)
respectively.

Lemma 2. 𝛼-2hop-DVB-360𝑜 is NP-hard in a directed graph,
∀𝛼 ≥ 1.

Proof: It suffices to show the following decision
version of 𝛼-2hop-DVB-360𝑜 is NP-hard.

DECISION VERSION OF 𝛼-2HOP-DVB-360𝑜:
Given a directed graph 𝐺 and a positive
integer 𝑘, determine whether 𝐺 has an 𝛼-2hop-
DVB-360𝑜 of size at most 𝑘.

To do so, we reduce the following decision version of
𝛼-2hop-DS problem to DECISION VERSION OF 𝛼-2HOP-
DVB-360𝑜.

DECISION VERSION OF 𝛼-2HOP-DS: Given a bi-
directed graph 𝐺𝑏𝑖 = (𝑉𝑏𝑖, 𝐸𝑏𝑖) and a positive
integer ℎ, determine whether 𝐺𝑏𝑖 has an 𝛼-
2hop-DS of size at most ℎ.

∀𝑣𝑏𝑖 ∈ 𝐺𝑏𝑖, one 360𝑜 directional antenna is deployed.
And derive two directed edges from one bi-directed
edge. Then, we can derive a directed graph 𝐺 =
(𝑉,𝐸,𝐷). 𝑉 = 𝑉𝑏𝑖. ∣𝐸∣ = 2∣𝐸𝑏𝑖∣ and ∀(𝑥, 𝑦) ∈ 𝐸𝑏𝑖, ∃(𝑥 →
𝑦) ∈ 𝐸 and (𝑦 → 𝑥) ∈ 𝐸. ∀𝑥 ∈ 𝑉𝑏𝑖, ∃𝑑𝑥 ∈ 𝐷 and the
degree of 𝑑𝑥 is 360𝑜.

We will show that 𝐺 has an 𝛼-2hop-DVB-360𝑜 of size
at most 𝑘 if and only if 𝐺𝑏𝑖 has an 𝛼-2hop-DS of size at
most ℎ = 𝑘.

(“⇒”) We first prove that when the size of the 𝛼-
2hop-DVB-360𝑜 (𝐷𝑆𝑢𝑏) in 𝐺 is at most 𝑘, then we can
derive an 𝛼-2hop-DS (𝑆𝑏𝑖) in 𝐺𝑏𝑖 of size at most 𝑘. In
the definition of 𝛼-2hop-DVB-360𝑜, we can get a node
subset 𝑉𝑆𝑢𝑏 from 𝐷𝑆𝑢𝑏 and the cardinality of 𝑉𝑆𝑢𝑏 is at
most 𝑘. We will prove that 𝑉𝑆𝑢𝑏 ⊆ 𝑉𝑏𝑖 is an 𝛼-2hop-DS.
Any node 𝑥 outside 𝑉𝑆𝑢𝑏 will have an adjacent node 𝑦
having the direction 𝑦(𝑥) ∈ 𝐷𝑆𝑢𝑏 and 𝑦(𝑥) → 𝑥 ∈ 𝐸.
In fact, if (𝑠 → 𝑡) ∈ 𝐸, then (𝑠 ↔ 𝑡) ∈ 𝐸𝑏𝑖. Thus,
∀𝑥 /∈ 𝑉𝑆𝑢𝑏, ∃𝑦 ∈ 𝑉𝑆𝑢𝑏 having (𝑥 ↔ 𝑦) ∈ 𝐸𝑏𝑖. From any
node 𝑥 to another node 𝑦 having ℎ(𝑥 → 𝑦) = 2 ∈ 𝐺,
there exists one directional path 𝑝(𝑥 → 𝑦) = {𝑥 →
𝑤1(𝑤2) → ... → 𝑤𝛽(𝑦) → 𝑦}, where 𝛽 ≤ 𝛼, satisfying “𝛼”
constraint and all intermediate nodes on which belong
to 𝐷𝑆𝑢𝑏. Moreover, we have 𝑤1, ..., 𝑤𝛽 ∈ 𝑉𝑆𝑢𝑏. Actually, if
𝐻(𝑥 → 𝑦) = 2 ∈ 𝐺 then 𝐻(𝑥 ↔ 𝑦) = 2 ∈ 𝐺𝑏𝑖. Meanwhile,
we have one bidirectional path 𝑝𝑏𝑖(𝑥 ↔ 𝑦) = {𝑥 ↔ 𝑤1 ↔
... ↔ 𝑤𝛽 ↔ 𝑦} ∈ 𝐺𝑏𝑖, satisfying 𝛼 constraint. Therefore,
we prove that 𝑉𝑆𝑢𝑏 is an 𝛼-2hop-DS of size at most 𝑘.

(“⇐”) In this part, we will prove when the size of the
𝛼-2hop-DS (𝑆𝑏𝑖) is at most 𝑘, then we can derive an 𝛼-
2hop-DVB-360𝑜 in 𝐺 of size at most 𝑘. For every node in
𝑆𝑏𝑖, its sole direction (360𝑜) will be included in 𝐷𝑆𝑢𝑏 and
no more other directions are in 𝐷𝑆𝑢𝑏. Hence the size of
𝐷𝑆𝑢𝑏 is at most 𝑘. We need to further prove 𝐷𝑆𝑢𝑏 satisfies

Directions in 
-MOC-DVB

1

4

2

3

Direction Id
of  Node X

(a) (b)

X α

s t

m s

t

m

1m

2m

Edge in )(mG

Edge in )(mG w

Fig. 4. Illustration of 𝐺 and 𝐺𝑤 in Alg. 1

the definition of 𝛼-2hop-DVB-360𝑜. ∀𝑥 /∈ 𝑆𝑏𝑖, ∃𝑦 ∈ 𝑆𝑏𝑖

having 𝑥 ↔ 𝑦 ∈ 𝐸𝑏𝑖. Correspondingly, we must have
𝑦 → 𝑥 ∈ 𝐸 and 𝑦(𝑥) ∈ 𝐷𝑆𝑢𝑏 because the direction on
each node is 360𝑜. “Dominating” is proved. For any pair
𝑥 and 𝑦 having 𝐻(𝑥 ↔ 𝑦) = 2 ∈ 𝐺𝑏𝑖, we have one
bidirectional path 𝑝𝑏𝑖 = {𝑥 ↔ 𝑤1 ↔ ... ↔ 𝑤𝛽 ↔ 𝑦} ∈ 𝐺𝑏𝑖,
where 𝛽 ≤ 𝛼. Since every node selected in 𝛼-2hop-DS has
one 360𝑜 direction in 𝐷𝑆𝑢𝑏, we can derive two directional
paths in 𝐺 — 𝑝(𝑥 → 𝑦) = {𝑥 → 𝑤1(𝑤2) → ... → 𝑤𝛽(𝑦) →
𝑦} and 𝑝(𝑦 → 𝑥) = {𝑦 → 𝑤𝛽(𝑤𝛽−1) → ... → 𝑤1(𝑥) → 𝑥}
satisfying “𝛼” constraint and all intermediate directions
are in 𝐷𝑆𝑢𝑏, where 𝑤𝑖(𝑤𝑖+1) = 𝑤𝑖(𝑤𝑖−1). Therefore, 𝐷𝑆𝑢𝑏

is an 𝛼-2hop-DVB-360𝑜.
In sum, 𝛼-2hop-DVB-360𝑜 is NP-hard.

𝛼-2hop-DVB is generalization of 𝛼-2hop-DVB-360𝑜.
Thus, 𝛼-2hop-DVB is NP-hard because of Lemma 2.
Thus, we can get Theorem 1.

Theorem 1. The 𝛼-MOC-DVB is NP-hard, ∀𝛼 ≥ 1.

4 ALGORITHM

Inspired by 𝛼-2hop-DVB, we will only consider the pair
of nodes exactly 2-hop away in our algorithm. The
algorithm that we propose is heuristic and localized
algorithm. Since the uniform directional antennas are
used, we try to select the directions acts as the inter-
mediate directions as more time as possible.

In our algorithm, we assign every node 𝑚 a unique id,
denoted as 𝐼𝐷(𝑚). We also assign a unique id to each
direction 𝑑, denoted as 𝐼𝐷(𝑑).

Every decision on each direction 𝑑 of each node 𝑚 is
based on its 𝛼 + 1 local topology information, denoted
by 𝐺(𝑚) = (𝑉 (𝑚), 𝐸(𝑚), 𝐷(𝑚)). 𝐺(𝑚) is a directed and
unweighted graph. Based on 𝐺(𝑚), we can derive a
local weighted graph 𝐺𝑤(𝑚) = (𝑉𝑤(𝑚), 𝐸𝑤(𝑚), 𝐷𝑤(𝑚)),
where 𝑉𝑤(𝑚) = 𝑉 (𝑚) and 𝐷𝑤(𝑚) = 𝐷(𝑚). If 𝑒(𝑣(𝑣 →
𝑢) → 𝑢) ∈ 𝐸(𝑚), we have 𝑒𝑤(𝑣(𝑣 → 𝑢) → 𝑢) = 0 ∈
𝐸𝑤(𝑚), where 𝑣(𝑣 → 𝑢) represents the direction 𝑣 uses
to reach 𝑢.

Based on 𝐺(𝑚) and 𝐺𝑤(𝑚), we can calculate a pair
set for each direction 𝑑 of 𝑚, denoted as 𝑝𝑎𝑖𝑟(𝑑). 𝑝𝑎𝑖𝑟(𝑑)
will record the pairs of nodes 𝑠 ∈ 𝑉𝑤(𝑚), 𝑡 ∈ 𝑉𝑤(𝑚)
satisfying 𝐻(𝑠 → 𝑡) = 2 ∈ 𝐺(𝑚) which means we
also have 𝐻(𝑠 → 𝑡) = 2 ∈ 𝐺𝑤(𝑚), 𝑝𝑤(𝑠 → 𝑡) =
{𝑠(𝑠 → 𝑚) → 𝑚(𝑚 → 𝑡) → 𝑡} ∈ 𝐺𝑤(𝑚), 𝑠(𝑠 →
𝑚) → 𝑚 ∈ 𝐺𝑤(𝑚), 𝑚(𝑚 → 𝑡) → 𝑡 ∈ 𝐺𝑤(𝑚), and
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𝑒𝑤(𝑠(𝑠 → 𝑚) → 𝑚) + 𝑒𝑤(𝑚(𝑚 → 𝑡) → 𝑡) + 1 ≤ 𝛼,
where 𝑚(𝑚 → 𝑡) = 𝑑. 𝑚(𝑚 → 𝑡) does not mean that
𝑡 must be in the direction 𝑑 of node 𝑚. Actually, it
means that 𝑚 can reach 𝑡 through directions already in
VB by sending out messages in direction 𝑑. There are
two situations that the 𝑑 can reach 𝑡 as shown in Fig. 4,
where 𝑑 = 𝑚(4). In Fig. 4 (a), 𝑚 can reach 𝑡 through 𝑑
directly. In Fig. 4 (b), 𝑚 uses 𝑑 to send messages to 𝑚1

and then 𝑚1 can reach 𝑡 through directions already in
VB. The two gray edges in Fig. 4 (b) are not there initially.
They are added during Local Weighted Subgraph’s
Update. 𝑓(𝑑) denotes the cardinality of 𝑝𝑎𝑖𝑟(𝑑), having
𝑓(𝑑) = ∣𝑝𝑎𝑖𝑟(𝑑)∣. The definition of direction weight will
be illustrated based on two elements — pair set and 𝐼𝐷
of the direction.

Algorithm 1 Distributed Selection of 2hop-DVB
Step 1. Each direction 𝑑 with nonempty 𝑝𝑎𝑖𝑟(𝑑), calcu-

lates 𝑓(𝑑) = ∣𝑝𝑎𝑖𝑟(𝑑)∣. Send out 𝑝𝑎𝑖𝑟(𝑑), 𝑓(𝑑),
and 𝐼𝐷(𝑑).

Step 2. Each node 𝑥 will order directions whose infor-
mation is sent out in Step 1 based on Direction
Weight decreasingly. It sends flags following
the policy of Flag Sending Condition. If there
are more than one such 𝑑, then it breaks tie by
choosing the one with lowest node id or lowest
direction id;

Step 3. If a direction 𝑑 receives flags from all its neigh-
bors, it adds 𝑑 to 𝐷𝑆𝑢𝑏 and adds corresponding
node to 𝑉𝑆𝑢𝑏. Update the local subgraph based
on Local Weighted Subgraph’s Update. Then it
sends 𝑝𝑎𝑖𝑟(𝑑) and the update information to all
its neighbors within 𝛼+1 hops. Set 𝑝𝑎𝑖𝑟(𝑑) = 𝜙;

Step 4. If node 𝑦 receives 𝑝𝑎𝑖𝑟(𝑑) and update infor-
mation, update 𝐺𝑤(𝑦) firstly. There are three
types of pairs which should be updated for
each direction’s 𝑝𝑎𝑖𝑟 set in 𝑦 — two kinds
of “remove” actions and one kind of “add”
action. 1). Add those pairs 𝑚1,𝑚2 into 𝑝𝑎𝑖𝑟(𝑑𝑦)
satisfying 𝐻(𝑚1 → 𝑚2) = 2 ∈ 𝐺𝑤(𝑦) and
𝑒𝑤(𝑚1(𝑚1 → 𝑦) → 𝑦) + 𝑒𝑤(𝑑𝑦 → 𝑚2) + 1 ≤ 𝛼,
where 𝑑𝑦 is any direction of node 𝑦. 2). Mean-
while, remove those pairs of nodes (𝑟1, 𝑟2) ∈
𝑝𝑎𝑖𝑟(𝑑𝑦), if 𝑒𝑤(𝑟1(𝑟1 → 𝑥) → 𝑥) + 𝑒𝑤(𝑥(𝑥 →
𝑟2) → 𝑟2) + 1 ≤ 𝛼 and direction 𝑥(𝑥 → 𝑟2) is
already in the DVB. 3). 𝑦 also computes union 𝑈
of the received 𝑝𝑎𝑖𝑟(𝑑)′𝑠 from other directions
and updates 𝑝𝑎𝑖𝑟 set of all directions of 𝑦 by
removing all pairs in 𝑈 .

Direction Weight: Given two direction 𝑑1 and 𝑑2, 𝑊 (𝑑1)
and 𝑊 (𝑑2) denote the weight of 𝑑1 and 𝑑2, respectively. We
say 𝑊 (𝑑1) < 𝑊 (𝑑2) if and only if 1). 𝑓(𝑑1) < 𝑓(𝑑2) or 2).
𝑓(𝑑1) = 𝑓(𝑑2) and 𝐼𝐷(𝑑1) < 𝐼𝐷(𝑑2).

When one node collect pair sets and corresponding
𝐼𝐷s from its neighbors, it will order all the directions,
including its own pair sets, in an decreasing way based

on the direction’s weight. And send out flags following
Flag Sending Condition. In our algorithm, one node
may send out more than one flag at one time.

Flag Sending Condition: A flag will be sent to direction
𝑑𝑦 from node 𝑚 if and only if 𝑝𝑎𝑖𝑟(𝑑𝑥)

∩
𝑝𝑎𝑖𝑟(𝑑𝑦) = 𝜙, ∀𝑑𝑥

1-hop away from 𝑚, having 𝑊𝑑𝑥 > 𝑊𝑑𝑦 .
After one direction of one node receives all flags from

its 1-hop neighbor nodes, the direction will be selected
and colored black. And the local weighted subgraph
of the node will be updated. In addition, the update
information will be sent out 𝛼 + 1 hops away from the
node.

Local Weighted Subgraph’s Update: If one direction
𝑑𝑚 of the node 𝑚 is selected as a VB member, 𝐺𝑤(𝑚) will
be updated. Add or update the edge 𝑒𝑤(𝑠(𝑠 → 𝑡) → 𝑡) =
𝑒𝑤(𝑠(𝑠 → 𝑚) → 𝑚) + 𝑒𝑤(𝑚(𝑚 → 𝑡) → 𝑡) + 1 to 𝐺𝑤(𝑚)
if the following four conditions are satisfied — 1). For any
pair of nodes 𝑠 and 𝑡 having 𝐻(𝑠 → 𝑡) ≤ 2 ∈ 𝐺𝑤(𝑚). 2).
𝑒𝑤(𝑠(𝑠 → 𝑚) → 𝑚) + 𝑒𝑤(𝑚(𝑚 → 𝑡) → 𝑡) + 1 < 𝛼. 3).
𝑒𝑤(𝑠(𝑠 → 𝑚) → 𝑚) + 𝑒𝑤(𝑚(𝑚 → 𝑡) → 𝑡) + 1 < 𝑒𝑤(𝑠(𝑠 →
𝑡) → 𝑡), if 𝑒𝑤(𝑠(𝑠 → 𝑡) → 𝑡) has already been in 𝐺𝑤(𝑚). 4).
𝑚(𝑚 → 𝑡) = 𝑑𝑚.

The new edges added in Local Weighted Subgraph’s
Update will be passed away (𝛼 + 1)-hop away. Nodes
receive the update information will add the new edges
to their own local weighted subgraphs.

The basic idea of the algorithm introduced in this
paper is a greedy strategy. For each direction 𝑑, it will
store 𝑝𝑎𝑖𝑟(𝑑). At each step, we choose the direction
which has the maximum cardinality of pair set. When
one direction is selected, remove those pairs of nodes
covered by the selected directions from those directions
outside DVB. Continue selection until 𝑝𝑎𝑖𝑟(𝑑) = 𝜙 for all
directions of all nodes. The details are given in Alg. 1.

Fig. 5 simulate a network in a region of 100𝑚× 100𝑚.
30 nodes are placed in the region. Transmission range
of every node in the virtual network is 25𝑚 and four
uniform directional antennas are deployed on each node
of 90𝑜. Grey sectors, as shown in the figure, represent
an 𝛼-MOC-DVB selected by Alg. 1. 𝛼 = 1 in Fig. 5 (a)
while 𝛼 = 2 in Fig. 5 (b). 44 directions are selected in the
resultant graph of 1-MOC-DVB and 42 one are selected
in 2-MOC-DVB. For example, 𝑓(𝑁12(2)) = 𝑓(𝑁15(2))
and 𝐼𝐷(𝑁12(2)) < 𝐼𝐷(𝑁15(2)). Thus, 𝑊 (𝑁12(2)) <
𝑊 (𝑁15(2)). The flags will be sent to 𝑁15(2) instead of
to 𝑁12(2). Hence, the second direction of 15 is selected
firstly to 1-MOC-DVB. Then the set 𝑝𝑎𝑖𝑟 of direction
𝑁12(2) will be recalculated as 𝜙. As a result, the second
direction of 12 will not be selected. 𝑁10(3) is selected in
Fig. 5 (a) instead of in Fig. 5 (b) because of the relaxation
on 𝛼. The pairs (𝑁19, 𝑁1) and (𝑁19, 𝑁30) are the only two
pairs going through 𝑁10(3) having 𝐻(𝑁19 → 𝑁1) = 2
and 𝐻(𝑁19 → 𝑁30) = 2. Due to the relaxation, we
can use the detour 𝑝(𝑁19 → 𝑁1) = {𝑁19 → 𝑁14(4) →
𝑁30(4) → 𝑁1}. And 𝑁19 can reach 𝑁30 through direction
𝑁14(4). Since 𝑁14(4) can also cover other pairs within 2-
hops away, 𝑁14(4) is selected before 𝑁10(3). Thus, 𝑁10(3)
will not be selected.
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(b) 𝛼 = 2

Fig. 5. An example of MOC-DVB by Alg. 1

5 THEORETICAL ANALYSIS

We will prove that our heuristic algorithm does output
an 𝛼-MOC-DVB in Theorem 2. The performance ratio of
our algorithm will also be studied. We will prove that
there is an unreachable lower bound of 𝛼-MOC-DVB.

Theorem 2. The direction subset selected 𝐷𝑆𝑢𝑏 in Alg. 1 is
an 𝛼-MOC-DVB.

Proof: Since the original graph is strongly connected,
then there must exist a node 𝑦 2-hop away for any node
𝑥. Initially, there should be a directional path 𝑝(𝑦 → 𝑥) =
{𝑦 → 𝑚(𝑥) → 𝑥} in 𝐺(𝑚) and (𝑦, 𝑥) ∈ 𝑝𝑎𝑖𝑟(𝑚(𝑥)). The

pair (𝑦, 𝑥) will not be removed from 𝑝𝑎𝑖𝑟(𝑚(𝑥)) until
there is a directional path 𝑝(𝑦 → 𝑥) = {𝑦 → 𝑚1(𝑚2) →
... → 𝑚𝛽(𝑥) → 𝑥} where 𝛽 ≤ 𝛼 and all intermediate
directions are in 𝐷𝑆𝑢𝑏. Hence 𝑤𝑘 has a direction in 𝐷𝑆𝑢𝑏

and 𝑥 is in the direction. As a result, every node is
dominated. And the number of intermediate directions
will not exceed 𝛼 from one node to another node within
2-hop away.

In sum, the selected directions by Alg. 1 form an
𝛼-2hop-DVB. Since 𝛼-2hop-DVB and 𝛼-MOC-DVB are
equivalent to each other, the direction subset is also an
𝛼-MOC-DVB.

Theorem 3. The message complexity of Alg. 1 is 𝑂(𝛿𝛼+1 ∗
∣𝑉 ∣∗𝐾+∣𝑉 ∣2∗𝐾∗𝛿) under unicast transmission model, where
𝛿 is the maximum node degree in the graph and 𝐾 denotes
the number of uniform antennas deployed on each node.

Proof: In Step 1 of Alg. 1, the message complexity
at each round will be 𝑂(𝛿 ∗ ∣𝑉 ∣). The total message
complexity of the first step is 𝑂(𝑟𝑜𝑢𝑛𝑑𝑠 ∗ ∣𝑉 ∣ ∗ 𝛿), where
𝑟𝑜𝑢𝑛𝑑𝑠 denotes the number of rounds that Alg. 1 will
be done. In Step 2 of Alg. 1, each node will only send
out at most one flag at each round. The total message
complexity of the second step is 𝑂(𝑟𝑜𝑢𝑛𝑑𝑠∗ ∣𝑉 ∣). In Step
3 of Alg. 1, one update information will be propagated
𝛼+ 1 away. Hence, the message complexity in Step 3 is
𝑂(𝛿𝛼+1 ∗ ∣𝑉 ∣ ∗ 𝐾). In the last step of the algorithm, no
message will be sent out. We also have 𝑟𝑜𝑢𝑛𝑑𝑠 ≤ 𝐾 ∗∣𝑉 ∣.

As a result, the total message complexity is 𝑂(𝛿𝛼+1 ∗
∣𝑉 ∣ ∗𝐾 + ∣𝑉 ∣2 ∗𝐾 ∗ 𝛿).

In [21], Ding et al. proved that there exists an unreach-
able lower bound of 1-2hop-DS — 𝜌 ln 𝛿, where ∀𝜌 < 1
and 𝛿 is the maximum node degree in a graph, unless
𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)). Thus, the generalization
case 𝛼-2hop-DS (𝛼 ≥ 1) also has such an unreachable
lower bound. We will prove that there also exists an
unreachable lower bound of 𝛼-MOC-DVB.

Theorem 4. Neither 𝛼-MOC-DVB nor 𝛼-2hop-DVB has a
polynomial time algorithm with approximation ratio 𝜌 ln 𝛿𝐷,
where ∀𝜌 < 1 and 𝛿𝐷 is the maximum direction degree in
the input graph, unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)).

Proof: Based on the proof of Lemma 2, an immediate
corollary of our claim is that the size of the minimum
𝛼-2hop-DS in the graph 𝐺𝑏𝑖 is 𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑆 if and
only if the size of the minimum 2hop-DVB-360𝑜 in the
corresponding graph 𝐺 is 𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑉𝐵−360𝑜 , where
𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑆 = 𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑉𝐵−360𝑜 . We prove that we
cannot propose a polynomial time algorithm to construct
a 2hop-DVB-360𝑜 with approximation ratio of 𝜌 ln 𝛿𝐷 by
contradiction method.

Assume 𝐺 has a polynomial time solution
𝐷𝑆𝑢𝑏 to 𝛼-2hop-DVB-360𝑜 with size at most
(𝜌 ln 𝛿𝐷)(𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑉𝐵−360𝑜) for some constant 𝜌 < 1.
Thus, we can find a polynomial time solution to 𝛼-
2hop-CDS with size at most (𝜌 ln 𝛿)(𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑆). This
implies that 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸(𝑛𝑂(log log 𝑛)). Therefore, the
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Fig. 6. Comparison of VB size among CDS-BD-D, MFKMS06, ZJH06, FlagContest and 𝛼-MOC-DVB in UDG
Networks, when 𝑘 = 4.
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Fig. 7. Comparison of VB size among CDS-BD-D, MFKMS06, ZJH06, FlagContest and 𝛼-MOC-DVB in UDG
Networks, when 𝑘 = 16.

assumption that 𝐺 has a polynomial time solution with
size at most (𝜌 ln 𝛿𝐷)(𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑉𝐵−360𝑜) for some
constant 𝜌 < 1 is incorrect.

Since 𝛼-2hop-DVB-360𝑜 is a special case of 𝛼-2hop-
DVB, we can get that there dose not exist a polyno-
mial time solution to 𝛼-2hop-DVB with size at most
(𝜌 ln 𝛿𝐷)(𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑉𝐵), where 𝑜𝑝𝑡𝛼−2ℎ𝑜𝑝−𝐷𝑉𝐵) is the
size of the optimal solution to 𝛼-2hop-DVB. In sum,
Theorem 4 is proved.

Next, we will prove the upper bound of our algorithm
for the case 𝛼 = 1 in Theorem 5. We first give the
definition of Set-Cover [26] before the proof.

Definition 4 (Set-Cover). Given a collection 𝒞 of subsets
of a finite set 𝑋 such that

∪
𝐴∈𝒞 𝐴 = 𝑋 , find a minimum

subcollection 𝒜 ⊆ 𝒞 such that
∪

𝐴∈𝒜 𝐴 = 𝑋 .

Theorem 5. Alg. 1 outputs the 𝑆𝑢𝑏 𝐷 with performance
ratio 1+ ln𝐾+2 ln 𝛿𝐷, where 𝛿𝐷 is the maximum direction
degree of the input graph and 𝐾 represents the number
antennas deployed on each node, when 𝛼 = 1.

Proof: During the computation of the new dis-
tributed algorithm, if a direction 𝑑 is selected to join 1-
MOC-DVB, we assign a weight 1/∣𝑝𝑎𝑖𝑟(𝑑)∣ to each pair
(𝑢, 𝑣) in 𝑝𝑎𝑖𝑟(𝑑).

Suppose the minimum 1-2hop-DVB is constructed by
{𝑑∗1, 𝑑∗2, ..., 𝑑∗𝑘}, denoted as 𝐷∗

𝑆𝑢𝑏. We estimate total weight

collected at each direction 𝑑∗𝑖 .
Initially, 𝑑∗𝑖 has “𝑓” value 𝑓0(𝑑

∗
𝑖 ) = ∣𝑝𝑎𝑖𝑟(𝑑∗𝑖 )∣, hav-

ing 𝑓0 < 𝐾 ∗ 𝛿2𝐷. After some directions are selected
in the 1-MOC-DVB, 𝑝𝑎𝑖𝑟(𝑑∗𝑖 ) is updated. Suppose for
updated 𝑝𝑎𝑖𝑟(𝑑∗𝑖 ), 𝑓1(𝑑

∗
𝑖 ) = ∣𝑝𝑎𝑖𝑟(𝑑∗𝑖 )∣. 𝑓0(𝑑

∗
𝑖 ) − 𝑓1(𝑑

∗
𝑖 )

is the number of pairs originally in 𝑝𝑎𝑖𝑟(𝑑∗𝑖 ) and now
are connected by those directions currently selected in
the 1-MOC-DVB. Each such pair (𝑢, 𝑣) has distance 2
such that 𝑢 and 𝑣 are adjacent to 𝑑∗𝑖 and also adjacent
to a new direction 𝑥 in VB. By condition that 𝑥 joins
the 1-MOC-DVB, at least one of u and v sends flag to
𝑥. This means that before update, 𝑓0(𝑑∗𝑖 ) = ∣𝑝𝑎𝑖𝑟(𝑑∗𝑖 )∣ ≤
∣𝑝𝑎𝑖𝑟(𝑑)∣. Therefore, (𝑢, 𝑣) received weight 1/𝑓0(𝑑), where
1/𝑓0(𝑑) ≤ 1/𝑓0(𝑑

∗
𝑖 ). All 𝑓0(𝑑

∗
𝑖 ) − 𝑓1(𝑑

∗
𝑖 ) pairs receives

weight at most (𝑓0(𝑑∗𝑖 )− 𝑓1(𝑑
∗
𝑖 ))/𝑓0(𝑑

∗
𝑖 ).

Similarly, we can prove that during the computation of
this distributed algorithm, all pairs in 𝑝𝑎𝑖𝑟(𝑑∗𝑖 ) received
total weight at most
𝑖=𝑘−1∑
𝑖=0

𝑓𝑖(𝑑
∗
𝑖 )− 𝑓𝑖+1(𝑑

∗
𝑖 )

𝑓𝑖(𝑑∗𝑖 )
≤

𝑖=𝑓0∑
𝑖=1

1

𝑖
≤ 1 +

∫ 𝑓0

1

(1/𝑥)𝑑𝑥

= 1 + ln𝐾 + 2 ln 𝛿𝐷

where 𝑓𝑘(𝑑
∗
𝑖 ) = 0 and 𝛿𝐷 is the maximum direction

degree in the input graph.
Note that when one node is selected to 𝐷𝑆𝑢𝑏, the

charged weight is 1. Thus, the total weight equals to
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the number of selected nodes, where 𝐷𝑆𝑢𝑏 is the node
set selected by Alg. 1. Therefore, we have ∣𝐷𝑆𝑢𝑏∣ ≤
(1 + ln𝐾 + 2 ln 𝛿𝐷) ∗ 𝑜𝑝𝑡, where 𝑜𝑝𝑡 is the size of the
minimum 1-MOC-DVB.

6 SIMULATION

In this section, we conduct thorough simulation exper-
iments to verify and analyze the performance of our
algorithm. Maximum Routing Cost (MRC) denotes the
maximum routing cost in one network between any pair
of nodes while Average Routing Cost (ARC) denotes
the average routing cost among all pair of nodes in the
network. Because of the use of uniform transmission
range and uniform directional antennas, MRC and ARC
can be evaluated by the routing length, that is the hop
counts on paths. Our algorithm will be compared with
other algorithms proposed for VB construction in terms
of VB size, MRC, and ARC. Based on the definition of 𝛼-
MOC-DVB, the source node will initiate a new message
in all direction in our simulation. Our algorithm and VB
will be compared with FKMS06 [27], ZJH06 [28], CDS-
BD-D [5], ECC [4], and FlagContest [6].

6.1 Simulation Setup
In our simulation, nodes are randomly placed in a fixed
area of 100𝑚 × 100𝑚. In one network, the nodes
have the same transmission radius varying among 15𝑚,
20𝑚, 25𝑚, and 30𝑚. We model the network allowing
obstacles existence. However, for convenience, we con-
duct the simulation experiments without consideration
of obstacles. The number of nodes 𝑛 in each network
is incremented from 10 to 100 by 10. The transmission
range of each node is divided into 𝐾 uniform sectors in a
network and the degree of each sector is 360/𝐾. For one
given set of 𝑛, 𝐾 and transmission radius, 100 connected
network instances are randomly generated. Experiment
results are averaged among the 100 instances for each
given set. The transmission model used in this paper is
unicast.

6.2 Simulation Results
Fig. 6 and Fig. 7 show the comparisons in term of size
among other VBs and the 𝛼-MOC-DVB selected by our
distributed algorithm for the case 𝐾 = 4 and 𝐾 = 16
respectively, where 𝛼 = 1 or 𝛼 = 2. The transmission
radius of the two figures vary among 15𝑚, 20𝑚, 25𝑚,
and 30𝑚. From the two figures, we can tell that VB size
becomes larger when the number of nodes increases for a
given transmission range. More directions or nodes are
selected to the VB because more nodes are needed to
be dominated. The increase speed of VB size will slow
down with the increase of node number because that
when more nodes are placed in one fixed region, nodes’
degrees will increase too and one node can dominate
more nodes. The size of MOC-CDS is much larger than
the size of other VBs because that MOC-CDS has shortest

path restriction forcing more nodes added to the MOC-
CDS and directional antennas are not used resulting
energy waste in unwanted regions. 1-MOC-DVB has the
shortest path constraint too. The size of 𝛼-MOC-DVB
will decrease much, when we relax 𝛼 = 1 to 𝛼 = 2.
The size of 2-MOC-DVB will decrease around 25%-60%,
compared to 1-MOC-DVB. An 𝛼1-MOC-DVB is also an
𝛼2-MOC-DVB and 𝛼1-MOC-DVB is more strict than 𝛼2-
MOC-DVB when 𝛼1 < 𝛼2. Thus, we can conclude that
when we increase 𝛼, the VB size will decrease. Even
though ECC selects a little bit fewer directions than 1-
MOC-DVB, the tradeoff is that ECC needs to compute all
paths with local information to select proper directions
under some circumstances, which is not efficient.

The size of a VB in a network means how many nodes
will be involved in broadcasting. The broadcasting costs
will be reduced when the size of VB becomes smaller.

As shown in Fig. 8 and Fig. 9, ARC and MRC increase
first and then decrease because the routing path length
is more likely to increase when a new node is added
in a connected network with small size of nodes. For
example, a network with 1 node inside has ARC equal
to 0. When a new node is connected to the network,
both ARC and MRC will increase to 1. Hence, routing
path length increases when 𝑛 increases (𝑛 is relatively
small). However, when 𝑛 exceeds a certain value, newly
added nodes are more likely to make distance between
nodes smaller and the network more connected (con-
sidering physical space is fixed) which explains both
MRC and ARC decrease. In addition, when transmission
range increases, networks are more connected consider-
ing physical space is fixed. This explains the decrease of
the routing cost in Fig. 8 and Fig. 9 compared to those
left to it. The MRC and the ARC of our 𝛼-MOC-DVB
is reduced around 90%, compared to those VB-based
routing CDS-BD-D, FKMS06 and ZJH06 without consid-
eration of routing cost and directional antennas. And our
𝛼-MOC-DVB is still around 67% better than MOC-CDS
with shortest path constraint but not directional antenna.
Meanwhile, we can also find that routing cost of 1-MOC-
DVB is smaler than that of 2-MOC-DVB. Hence, we can
conclude that there exists a tradeoff between the size of
𝛼-MOC-DVB and routing cost.

7 CONCLUSION

In this paper, we propose virtual backbone (VB) with
guaranteed routing cost (𝛼-MOC-DVB). It is proved
that constructing a minimum 𝛼-MOC-DVB is NP-hard.
There exists an unreachable lower bound of 𝛼-MOC-
DVB. We propose a greedy distributed algorithm to
construct 𝛼-MOC-DVB. When 𝛼 = 1, the performance
ratio of our algorithm is 1 + ln𝐾 + 2 ln 𝛿𝐷 where 𝛿𝐷
is the maximum direction degree in the network and 𝐾
represents the number of antennas deployed on each
node in the network. The simulation results demonstrate
the 𝛼-MOC-DVB outperforms many other VB works.
Our future work includes further theoretical analysis of
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Fig. 8. Comparison of Average Routing Path Cost among CDS-BD-D, FKMS06, ZJH06, FlagContest and 𝛼-MOC-DVB
in UDG Networks.
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Fig. 9. Comparison of Maximum Routing Cost among CDS-BD-D, FKMS06, ZJH06, FlagContest and 𝛼-MOC-DVB in
UDG Networks.

our algorithm for the case 𝛼 > 1 and propose algorithm
with better performance ratio.
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