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Evolving Graph(Web Graph)

o1 The directed links between web pages

1 Used for computing the of the WWW
pages [4]
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Page Rank

Classic link analysis algorithm based on the web
graph

A page that is linked to by many pages receives a
high rank itself. Otherwise, it receives a low rank.
The rank value indicates an importance of a
particular page. [5]

Very effective measure of reputation for both web
graphs and social networks.
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Example
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Problem

Traditional algorithm paradigm is inadequate for
evolving data
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Traditional Paradigm
[

0 Stationary dataset input- inadequate for
current social networks Data

0 It is necessary for algorithm to probe the
input continually and produce solutions at
any point in time that are close to the
correct solution for the then-current input.

Output




Motivating examples

Web pages
Millions of hyperlinks modified each day

Which portions of the web should a crawler focus
most?

Social networks

Millions of social links modified each day

Which users should a third-party site track in
order to recompute, eg, global reputation?
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Motivating examples

In fact, Pagerank may be always imprecise.
e.g. Learn about changes->

crawling webs->

limit of crawling capacity->

stale image of graph ->

graph structure->

Pagerank




Objective Algorithm

Design an algorithm that decides which pages to
crawl and computes the PageRank using the
obtained information

Maintains a good approximation of the true
PageRank values of the underlying evolving graph

Which pages to crawl

The error is bounded at any point in time
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Page Rank algorithm categories

Linear algebraic methods[3]
-Power iteration speed up.

E.g, web graph.

Monte carlo methods[6]
-efficient and highly scalable

E.g, data streaming anfd map reduce.
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Evolving graph model

A sequence of directed graphs over time
G, = (V, E,) = graph at time 1
Nodes do not change (for simplicity)
Assume |E., ; — E,| is small
Choose t fine enough
No change model assumed

At time t, algorithm can probe a node u to get N(u),
i.e, all edges in E, of the form (u, v)

No constraints on running time or storage space

Probing strategy focus on which node to probe
each time
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PageRank on evolving graphs

Teleport probability-€
Probability of jumping to a random node
Stationary distribution of random walk:

-walk with € move to a node chosen uniformly at random

-walk with 1-g£:choose one of the outgoing edges of the current

node uniformly at random and move to the head of that
edge

775J is PageRank of node uin G
in; is in-degree of node u
out! is out-degree of node u
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Baseline probing methods

Random probing(randomized)

Probe a node v chosen uniformly at random at

each time step
Round-robin probing(deterministic)

Cycle through all nodes and probe each in a
round-robin manner

We can vary the ratio of change rate and probing
rate
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Propotional Probing

At each step t, pick a node v to probe with

probability proportional to the PageRank of v in the
algorithm's current image of the graph.

The output is the PageRank vector of the current
image.
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Priority Probing

Algorithm 1 Priority Probing

for all nodes u do
priority,, <+ 0
for every time step ¢ do
U 4 ATE MAX,, PTiOTitYoy o
Probe v for every timestep t do
Let H' be the current image of the graph
Output the PageRank vector ¢* of H*
priority, < 0
for all nodes u £ v do
priority, < priority, + &,
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Experiment

Dataset
AS(Autonom ous Systems, graph of routers)
CAIDA(communication patterns of the routers)

RAND (generated randomly)

Dataset | max #nodes #initial F#temporal Yoedge
() edges edges additions
AS 7,716 10,696 488,986 0.516
CAIDA 31,379 65,911 1,084,388 0.518
RAND 100 715 250,000 0.5

Table 1: Details of the datasets used.
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Experiment

Random Probing serves as a baseline for
Proportional Probing

Round-Robin serves as a baseline for Priority
Probing

Hybird algorithm between Proportional Probing and
Round-Robin Probing is parametrized by

Metric B e [(),1]

L_ metricL_ (7Z't @' ) = max

7'(u)-¢'(u)
7'(u)-¢'(u)

ueVv

L, metricL, (ﬂ't ¢ )= Liey
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Results( AS & CAIDA )

Propotional Probing is better than Random Probing
Priority Probing is better than Round-Robin Probing

The algorithm perform better when they probe more

frequently
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AS graph (L1 errors)
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AS graph (Loo errors)

3e-06 i

Average L_ error

2e-086

Random —+—

1e-06 Round-Robin = 7
L Proportional —+—
Priority —=—
.D ' 1 1 1 1
0 100000 200000 300000 400000 500000
# changes

2013/2/12

20



0.00014

0.00012

0.0001

8e-05

Ge-05

Average L, error

da-05

CAIDA graph (L1 errors)

2a-05 [

o

L Bl -
B T
i
LA

Random

Round-Robin

Proportional —»—

Priority

+
i

&

100000

# changes

200000

300000

2013/2/12

21



CAIDA graph (Loo errors)
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Average L ermor
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Algorithm's 1image vs truth(1)
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Algorithm's 1mage vs truth(2)
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Figure 5: Staleness of the image of algorithms for
the AS graph.
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Hybird Algorithm (L1 &Loo)
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Hybird Algorithm (B=01. or 0.9)
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Analysis(1)

LEMMA 1. Let D(w*™ %) be the total variation distance
between 7't and 7. Then,

1 —¢
me

E[D(x" ! ")) <

LEmmA 2. The expected PageRank of any node x at time
t + 1, conditioned on the graph at time t, satisfies

. (1‘ ﬁ) <EF ¢ <t (Hi).

e2m

CoROLLARY 3. For any node x, time t, and time differ-
ence T > 0:

(1—%) T S Elm: | G < (H%) .
E=TTL ) ’ ) E=TN
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Analysis(2)

THEOREM 4. For a time instance t, assume that there
exists an o > 0 such that for all nodes v € V and all t—2n <
T<t-—1:

(1—a)é} < Ell |GT L H'] < (1+a)dl.

Then, letting 3 = (1 — E)H_?&{l + EIE)E“, we have for all
ve V:

(1-B)g, < Efrt |G H'] < (1+ B)dL.

COROLLARY 5. In the steady state

(1 ~0 (i)) o' < E[r' |G" L H < (1 +0 (i)) o'
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Conclusion

Obtain simple effective algorithm

Evaluate algorithms empirically on real and
randomly generated datasets.

Proved theoretical results in a simplified model

Analyze the theoretical error bounds of the
algorithm

Challenge: extend our theoretical analysis to other
models of graph evolution.
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